CAREER: Development of Learning Frameworks for Nonlinear Massive MIMO Systems
职业:非线性大规模 MIMO 系统学习框架的开发
基本信息
- 批准号:2146436
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The need for enabling massive connectivity using energy- and cost-efficient massive multiple-input multiple-output (MIMO) wireless transceivers, mobile devices, sensors, and actuators has motivated engineers to use low-cost and non-customized hardware. However, these hardware components are highly susceptible to generating nonlinear distortions. Moreover, each component distorts the signals of interest in its own way with a possibly unknown nonlinear transfer function that needs to be compensated by signal processing techniques. Studies of massive MIMO have demonstrated its tolerance to hardware impairments. In addition, community research efforts have also focused on new performance frontiers in signal processing for nonlinear massive MIMO. This CAREER project is framed into these efforts by developing novel learning frameworks for signal processing in nonlinear massive MIMO systems in which structured optimization of their performance is not feasible or too complex to implement. The project aims to construct a holistic approach to estimate, detect, optimize, and adapt in nonlinear MIMO systems with the development of model-based and model-free machine learning, deep learning, deep reinforcement learning, and meta-learning frameworks. The outcomes of the project can transform the area of MIMO signal processing and propel massive MIMO into the next stage of development. Moreover, the project will integrate research and education activities through the development of undergraduate and graduate level courses and an integrated wireless testbed for research and training. The project also aims to broaden the participation of underrepresented minorities and women in research and educational activities in electrical engineering with an emphasis on communications and signal processing.This project will develop new learning frameworks to resolve the aggregation of nonlinearities in wireless transceivers and to optimize massive MIMO performance in highly dynamic and ill-defined operational environments with possibly unknown distortions. The project is organized into four interconnected thrusts: i) Learning to estimate and detect with machine learning and deep learning by incorporating the domain knowledge of nonlinear MIMO for devising efficient model-based and data-driven learning models, ii) Learning to optimize signaling designs with deep learning and deep reinforcement learning, focusing on optimizing pilot and signaling designs for model-based and model-free nonlinear MIMO systems, iii) Learning to adapt with offline and online meta-learning, focusing on developing learning models that will enable fast adaptation to a newly observed nonlinear MIMO system configuration with only few training samples, and iv) Integrating research into coursework development for teaching wireless communications and signal processing to undergraduate/graduate students with hands-on experiments using built-in software-defined radio and off-the-shelf wireless testbeds. Through the development of learning to estimate, detect, optimize, and adapt frameworks, this project will promote a better understanding of signal processing in nonlinear MIMO systems and will have broad applications in other learning-based wireless systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
使用节能且具有成本效益的大规模多输入多输出 (MIMO) 无线收发器、移动设备、传感器和执行器来实现大规模连接的需求促使工程师使用低成本和非定制的硬件。然而,这些硬件组件非常容易产生非线性失真。此外,每个组件都会以自己的方式扭曲感兴趣的信号,并具有可能未知的非线性传递函数,需要通过信号处理技术进行补偿。大规模 MIMO 的研究已经证明了其对硬件损伤的容忍度。此外,社区研究工作还集中在非线性大规模 MIMO 信号处理的新性能前沿。该职业项目通过开发用于非线性大规模 MIMO 系统中信号处理的新颖学习框架来构建这些工作,在该系统中,对其性能进行结构化优化是不可行的或太复杂而难以实现。该项目旨在通过开发基于模型和无模型的机器学习、深度学习、深度强化学习和元学习框架,构建一种整体方法来估计、检测、优化和适应非线性 MIMO 系统。该项目的成果可以改变MIMO信号处理领域,并推动大规模MIMO进入下一发展阶段。此外,该项目将通过开发本科和研究生课程以及用于研究和培训的综合无线测试平台来整合研究和教育活动。该项目还旨在扩大代表性不足的少数族裔和妇女对电气工程研究和教育活动的参与,重点是通信和信号处理。该项目将开发新的学习框架,以解决无线收发器中非线性的聚合问题,并优化大规模在高度动态和不明确的操作环境中(可能存在未知失真)中的 MIMO 性能。该项目分为四个相互关联的主旨:i) 通过结合非线性 MIMO 领域知识,学习使用机器学习和深度学习进行估计和检测,以设计高效的基于模型和数据驱动的学习模型,ii) 学习优化信令设计通过深度学习和深度强化学习,专注于优化基于模型和无模型非线性 MIMO 系统的导频和信令设计,iii) 学习适应离线和在线元学习,专注于开发能够实现快速适应的学习模型到新观察到的非线性 MIMO 系统配置只有很少的训练样本,以及 iv) 将研究整合到课程开发中,通过使用内置软件定义无线电和现成的无线测试台进行动手实验,向本科生/研究生教授无线通信和信号处理。通过开发学习估计、检测、优化和适应框架,该项目将促进人们更好地理解非线性 MIMO 系统中的信号处理,并将在其他基于学习的无线系统中得到广泛的应用。该奖项反映了 NSF 的法定使命和通过使用基金会的智力价值和更广泛的影响审查标准进行评估,该项目被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variational Bayes Inference for Data Detection in Cell-Free Massive MIMO
用于无细胞大规模 MIMO 数据检测的变分贝叶斯推理
- DOI:10.1109/ieeeconf56349.2022.10051916
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Nguyen, Ly V.;Ngo, Hien Quoc;Tran, Le;Swindlehurst, A. Lee;Nguyen, Duy H.
- 通讯作者:Nguyen, Duy H.
Leveraging Deep Neural Networks for Massive MIMO Data Detection
利用深度神经网络进行大规模 MIMO 数据检测
- DOI:10.1109/mwc.013.2100652
- 发表时间:2023-02
- 期刊:
- 影响因子:12.9
- 作者:Nguyen, Ly V.;Nguyen, Nhan T.;Tran, Nghi H.;Juntti, Markku;Swindlehurst, A. Lee;Nguyen, Duy H.
- 通讯作者:Nguyen, Duy H.
A Variational Bayesian Perspective on MIMO Detection with Low-Resolution ADCs
使用低分辨率 ADC 进行 MIMO 检测的变分贝叶斯视角
- DOI:10.1109/ieeeconf56349.2022.10052059
- 发表时间:2022-10-31
- 期刊:
- 影响因子:0
- 作者:Ly V. Nguyen;A. L. Swindlehurst;D. Nguyen
- 通讯作者:D. Nguyen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duy Nguyen其他文献
Current status of cardiac MRI in small animals
小动物心脏MRI研究现状
- DOI:
10.1007/s10334-004-0066-4 - 发表时间:
2004-12-16 - 期刊:
- 影响因子:0
- 作者:
Jean;M. Ivancevic;Duy Nguyen;Denis R. Morel;Marisa Jaconi - 通讯作者:
Marisa Jaconi
Demo: Fusing Mobile Sensors for Paper Keyboard On-the-Go
演示:为移动纸键盘融合移动传感器
- DOI:
10.1145/3081333.3089328 - 发表时间:
2017-06-16 - 期刊:
- 影响因子:0
- 作者:
Anh Nguyen;Duy Nguyen;Nhan V. Nguyen;A. Ashok;Binh Nguyen;B. Pham;Tam N. Vu - 通讯作者:
Tam N. Vu
Robotic Anatomic Pulmonary Segmentectomy
机器人解剖肺段切除术
- DOI:
10.1007/978-3-030-53594-0_35 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
F. Gharagozloo;Duy Nguyen;Barbara J. Tempesta;M. Meyer;Hannah Hallman;S. Gruessner - 通讯作者:
S. Gruessner
Revisiting the Effect of the Air-Water Interface of Ultrasonically Atomized Water Microdroplets on H2O2 Formation.
重新审视超声波雾化水微滴的空气-水界面对 H2O2 形成的影响。
- DOI:
10.1021/acs.jpcb.2c01310 - 发表时间:
2022-04-19 - 期刊:
- 影响因子:0
- 作者:
Duy Nguyen;Son C. Nguyen - 通讯作者:
Son C. Nguyen
Estimating the health impact of vaccination against ten pathogens in 98 low-income and middle-income countries from 2000 to 2030: a modelling study
估计 2000 年至 2030 年 98 个低收入和中等收入国家接种十种病原体疫苗对健康的影响:一项建模研究
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Xiang Li;Christinah Mukandavire;Z. Cucunubá;Susy Echeverria Londono;K. Abbas;H. Clapham;M. Jit;H. Johnson;Timos Papadopoulos;E. Vynnycky;M. Brisson;E. Carter;A. Clark;Margaret J. de Villiers;K. Eilertson;M. Ferrari;I. Gamkrelidze;K. Gaythorpe;N. Grassly;T. Hallett;W. Hinsley;M. Jackson;K. Jean;A. Karachaliou;P. Klepac;J. Lessler;Xi Li;S. Moore;S. Nayagam;Duy Nguyen;H. Razavi;D. Razavi‐Shearer;S. Resch;C. Sanderson;Steven Sweet;S. Sy;Yvonne Tam;Hira Tanvir;Q. Tran;C. Trotter;S. Truelove;K. van Zandvoort;S. Verguet;N. Walker;A. Winter;Kim Woodruff;N. Ferguson;T. Garske - 通讯作者:
T. Garske
Duy Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duy Nguyen', 18)}}的其他基金
Collaborative Research: U.S.-Ireland R&D Partnership: CIF: AF: Small: Enabling Beyond-5G Wireless Access Networks with Robust and Scalable Cell-Free Massive MIMO
合作研究:美国-爱尔兰 R
- 批准号:
2322190 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: AF: Small: Energy-Efficient THz Communications Across Massive Dimensions
合作研究:NSF-AoF:CIF:AF:小型:大尺寸的节能太赫兹通信
- 批准号:
2225576 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
深度学习电子结构计算方法发展
- 批准号:12334003
- 批准年份:2023
- 资助金额:239 万元
- 项目类别:重点项目
亲社会行为发展的情绪奖赏机制:基于强化学习计算模型
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
针对构型无序材料的机器学习方法发展与应用
- 批准号:22273002
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
社会情感学习对西部农村学生发展的影响机理与干预评估
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的小气道功能和阻力可视化对COPD发生发展的预测研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Development of model programs for career education in junior and high schools to realize "authentic learning"
开发初高中职业教育示范项目,实现“真实学习”
- 批准号:
23K02711 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Delineating the kidney brain axis in children with severe malaria (KID-BRAIN)
描绘严重疟疾儿童的肾脑轴(KID-BRAIN)
- 批准号:
10734142 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Feasibility of a Hearing Program in Primary Care for Underserved Older Adults
为服务不足的老年人提供初级保健听力计划的可行性
- 批准号:
10727976 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别: