PIC: Hybrid Photonic-Electronic Reprogrammable Reservoir Computing with Polarization Modes-enhanced Dimensionality
PIC:具有偏振模式增强维数的混合光子-电子可重编程储层计算
基本信息
- 批准号:2217453
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-15 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The recent success of Machine Learning methods based on brain-inspired Neuromorphic Computing (NC) to perform complex information processing tasks spiked significant research in new unconventional computational schemes such as Recurrent Neural Networks (RNNs) and RNN-based Reservoir Computing (RC) which are capable to implement parallel data processing to overcome limitations of conventional sequential computing. Particularly, decomposing the reservoir into an inner network with static weights and an output neurons layer with adaptive and trainable weights allows realization of physical RC where optical-based RC platforms are attractive due to the “speed-of-light” propagation, inherent parallelism, relatively low operation power, and the possibility to harness additional degrees of freedom such as polarization and wavelength. Furthermore, on-chip Photonic Integrated Circuit (PIC) offer enhanced light-matter interaction and modes polarization for enlarged reservoir, and interconnection with CMOS compatible electronics for power efficient electrical reprogrammable feedback. The proposed physical RC PICs are expected to impact mobile applications such as unmanned autonomous vehicles (UAV) and robotic platforms by reducing the need for communication with remote computers, thus avoiding latency and prolonging battery life.(technical description) To realize the reservoir computing (RC) processor utilizing the polarization degrees of freedom on a photonic integrated chip (PIC), we propose the following objectives: (1) numerical and theoretical study aiming to explore the effect of introducing polarization as a new degree of freedom on RC efficiency depending on the underlying architecture of PIC with the electronic feedback elements providing dynamics control; (2) design, fabricate and characterize silicon PIC interconnected with external electronic feedback, admitting the designed architectures; (3) experimentally test the PIC system with external electronic feedback to realize reprogrammable RC tasks, validate the theoretical study and evaluate its performance for relevant applications providing higher accuracy and lower energy consumption compared to state-of-the-art. Rapid prototyping and testing will be performed at UCSD with full scale runs performed at the AIM Photonics foundry. The proposed research is transformative in nature as it will: (i) greatly expand the limits of applicability of RC in CMOS compatible PIC platforms, (ii) develop a fundamental understanding on the effect of reprogrammability on the induced reservoir dynamics and the corresponding performance error, (iii) expand the current notions of both RC and the optical degrees of freedom employed for RC (e.g., polarization). The transformative broader impact of the project arises from the creation of a new much faster and more efficient RC PIC accelerator that will impact mobile applications such as UAV and robotic platforms. The project will provide scientific training for students at graduate and undergraduate levels as well as serve as a basis for outreach, education and collaborative efforts with middle and high schools. Engagement of students of diverse ethnicity, gender and economic backgrounds in Science, Technology, Engineering and Mathematics (STEM) will be continued via the ongoing RET, REU, and COSMOS activities. The program will continue developing a plug & play Integrated Photonics Education Kit (IPEK) and disseminate it to other institutions to implement hands-on classes for a large number of students with diverse origins and gender, and workforce population in the U.S.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近,基于类脑神经形态计算 (NC) 的机器学习方法在执行复杂的信息处理任务方面取得了成功,这引发了对新的非常规计算方案的重大研究,例如循环神经网络 (RNN) 和基于 RNN 的储层计算 (RC),这些方案能够实现并行数据处理,以克服传统顺序计算的局限性,特别是,将存储库分解为具有静态权重的内部网络和具有自适应和可训练权重的输出神经元层,可以实现物理RC,其中基于光学的 RC 平台因其“光速”传播、固有的并行性、相对较低的操作功率以及利用偏振和波长等额外自由度的可能性而颇具吸引力,此外还有片上光子集成电路。 (PIC) 提供增强的光与物质相互作用和模式偏振,以扩大储层,并与 CMOS 兼容电子器件互连,以实现高能效的电气可重新编程反馈。所提出的物理 RC PIC 预计将影响无人驾驶汽车等移动应用。通过减少与远程计算机的通信需求,从而避免延迟并延长电池寿命,无人机(UAV)和机器人平台。(技术描述)利用光子集成芯片(PIC)上的偏振自由度实现储层计算(RC)处理器) ),我们提出以下目标:(1) 数值和理论研究,旨在探索引入极化作为新的自由度对 RC 效率的影响,具体取决于 PIC 的底层架构以及提供动态控制的电子反馈元件;( 2)设计、制造和表征与外部电子反馈互连的硅PIC,承认所设计的架构;(3)通过实验测试具有外部电子反馈的PIC系统以实现可重新编程的RC任务,验证理论研究并评估其为相关应用提供的性能,从而提供更高的精度和更低的能耗。快速原型设计和测试将在 UCSD 进行,并在 AIM Photonics 代工厂进行全面运行。拟议的研究本质上是变革性的,因为它将:(i)极大地扩展了技术的极限。 RC 在 CMOS 兼容 PIC 平台中的适用性,(ii) 对可重编程性对诱发储层动力学和相应性能误差的影响有一个基本的了解,(iii) 扩展了 RC 和光学自由度的当前概念RC(例如,极化)。该项目的变革性更广泛影响来自于创建更快、更高效的新 RC PIC 加速器,该加速器将影响无人机和机器人平台等移动应用。为研究生和本科生提供培训,并作为与初中和高中的外展、教育和合作的基础,让不同种族、性别和经济背景的学生参与科学、技术、工程和数学 (STEM) 领域。将通过正在进行的 RET、REU 和 COSMOS 活动继续该计划将继续开发即插即用集成光子学教育套件 (IPEK) 并将其分发给其他机构,为大量不同背景的学生实施实践课程。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vertical-cavity surface-emitting phase shifter
垂直腔面发射移相器
- DOI:10.1364/oe.497606
- 发表时间:2023
- 期刊:
- 影响因子:3.8
- 作者:Almutairi, Dhaifallah;Johnson, Karl;Smolyaninov, Alexei;Grieco, Andrew;Fainman, Yeshaiahu
- 通讯作者:Fainman, Yeshaiahu
Compensation of Kerr-induced impairments in silicon nitride third-harmonic generators
氮化硅三次谐波发生器中克尔引起的损伤的补偿
- DOI:10.1364/oe.479059
- 发表时间:2023
- 期刊:
- 影响因子:3.8
- 作者:Chen, Zijun;Fainman, Yeshaiahu
- 通讯作者:Fainman, Yeshaiahu
Multirate Spectral Domain Optical Coherence Tomography
- DOI:10.1109/jphot.2023.3313521
- 发表时间:2023-10-01
- 期刊:
- 影响因子:2.4
- 作者:Gaur,Prabhav;Grieco,Andrew;Fainman,Yeshaiahu
- 通讯作者:Fainman,Yeshaiahu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yeshaiahu Fainman其他文献
Système et procédé pour un état lié dans des sources laser en continuum
连续激光源的系统和程序
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Boubacar Kante;Yeshaiahu Fainman;Thomas Lepetit;Ashok Kodigala;Qingyi Gu - 通讯作者:
Qingyi Gu
Yeshaiahu Fainman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yeshaiahu Fainman', 18)}}的其他基金
ASCENT: Collaborative Research: Programmable Photonic Computation Accelerators (PPCA)
ASCENT:协作研究:可编程光子计算加速器(PPCA)
- 批准号:
2023730 - 财政年份:2020
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Quantum Communication Circuits on a CMOS Chip (QC4)
CMOS 芯片上的量子通信电路 (QC4)
- 批准号:
1901844 - 财政年份:2019
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
PIC: Mobile in Situ Fourier Transform Spectrometer on a Chip
PIC:芯片上的移动原位傅立叶变换光谱仪
- 批准号:
1807890 - 财政年份:2018
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
CREWS: Chemical Resonance Excitation Wavelength Selection for Label-Free DNA Analysis
CREWS:无标记 DNA 分析的化学共振激发波长选择
- 批准号:
1704085 - 财政年份:2017
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Synthesis of Second-Order Optical Nonlinearities with Electronic Metamaterials
用电子超材料合成二阶光学非线性
- 批准号:
1707641 - 财政年份:2017
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Generation and Manipulation of New Sources in 20-60 micron on a Chip
合作研究:EAGER:在芯片上生成和操纵 20-60 微米的新光源
- 批准号:
1644647 - 财政年份:2016
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
E2CDA: Type I: Collaborative Research: Energy Efficient Computing with Chip-Based Photonics
E2CDA:类型 I:协作研究:基于芯片的光子学的节能计算
- 批准号:
1640227 - 财政年份:2016
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Exploring the Frontier of Photonic Device Size, Speed, and Efficiency Limits with Gain-enhanced Multifuncional Metamaterials
利用增益增强型多功能超材料探索光子器件尺寸、速度和效率限制的前沿
- 批准号:
1507146 - 财政年份:2015
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Fundamental Investigations of Nanolaser Physics: Statistical Properties, Thermal Stability, and Temporal Dynamics of Light Emission
纳米激光物理的基础研究:统计特性、热稳定性和光发射的时间动力学
- 批准号:
1405234 - 财政年份:2014
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
EAGER: Cartridge lab-on-chip (CLOC) for Mobile Health
EAGER:用于移动医疗的盒式芯片实验室 (CLOC)
- 批准号:
1445158 - 财政年份:2014
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
相似国自然基金
在油菜中发展基因组选择技术助力新型种质资源库优良株系的鉴定和杂交种测配
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
亲本自交系对玉米杂交种抗旱能力的影响及机理解析
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于全长转录组研究“西盘鲍”杂交种阶段性抗病菌杂种优势的机制
- 批准号:31902369
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于深度压缩技术的Hybrid像素探测器读出系统原型机研制
- 批准号:11875146
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
模拟胰岛“hybrid”修饰抗原诱导tolDC免疫保护1型糖尿病β细胞研究
- 批准号:81770777
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
相似海外基金
Novel 2D material hybrid photonic crystal nanocavity for optoelectronic devices
用于光电器件的新型二维材料混合光子晶体纳米腔
- 批准号:
24K17627 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Excellence in Research: Tunable hybrid photonic materials at strong coherent coupling
卓越的研究:强相干耦合的可调谐混合光子材料
- 批准号:
2301350 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Hybrid Models of Photosystems I and II
光系统 I 和 II 的混合模型
- 批准号:
23K04686 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DMREF: Magneto-electro-optically coupled hybrid metamaterial thin film platform for photonic integrated circuits
DMREF:用于光子集成电路的磁电光耦合混合超材料薄膜平台
- 批准号:
2323752 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
PATTERN: Next generation ultra-high-speed microwave Photonic integrATed circuiTs using advancE hybRid iNtegration
模式:采用先进混合集成的下一代超高速微波光子集成电路
- 批准号:
10044974 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
EU-Funded