PPoSS: LARGE: Intel: Combining Learning and Formal Verification for Scalable Machine Programming (ScaMP)
PPoSS:大:英特尔:结合学习和形式验证实现可扩展机器编程 (ScaMP)
基本信息
- 批准号:2217064
- 负责人:
- 金额:$ 250万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modem applications combine the need for extreme scalability with enormous complexity to provide rich functionality to millions of simultaneous users. In this context, programmer productivity is achieved by building on deep stacks of pre-existing components and systems software, allowing programmers to focus on core application logic. However, for the applications with the highest performance needs, the standard approach is not enough; instead, painstaking performance engineering effort is needed for the code to take advantage of all available accelerators and exploit all the opportunities for optimization. The cost of this effort can make applications difficult to adapt to changes in requirements or to the newly available hardware. The ScaMP project is developing a novel programming system that offers a new approach for building modern applications with strong performance and scalability requirements. ScaMP stands for Scalable Machine Programming, and the project’s novelty is the way in which it leverages advances in machine learning and programming-language technology to capture users’ intent at the high level, translate that intent into a working implementation, make the generated code perform efficiently on a variety of platforms, and support its maintenance and evolution. ScaMP provides an iterative development model that combines extremely high-level specification with fine control over low-level implementation decisions and a high degree of performance portability. The impact of the ScaMP project will be to lower the cost of developing high-performance applications. ScaMP decomposes into four main layers. First, incremental multimodal specification starts from natural language and informal diagrams and refines them into precise component specifications written in safe stackable smart domain-specific languages. These DSLs make up the second layer of the system and can generate architecture-independent distributed code through Coq-proved algebraic rewrite rules. The next layer is correct-by-construction code-generator generation, which produces compiler backends for multiple heterogeneous architectures, supporting generation of highly optimized assembly code, guaranteeing correctness using Coq-proved translation validation. Both of these layers use learning, to infer both models of hardware platforms and strategies for optimizing for those platforms effectively; as well as formal methods, to create proof that programs were optimized correctly. Finally, the last layer supports lifetime monitoring, learning, and adaptation to manage the more "data-science" side of developing and evolving a heterogeneous software system, using measurement to drive regeneration and scaling out of higher-performance code.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代应用程序将极端可扩展性的需求与巨大的复杂性结合起来,为数百万并发用户提供丰富的功能,在这种情况下,程序员的生产力是通过构建预先存在的组件和系统软件的深层堆栈来实现的,从而使程序员能够专注于核心应用程序。然而,对于具有最高性能需求的应用程序来说,标准方法是不够的;相反,代码需要付出艰苦的性能工程努力才能利用所有可用的加速器并利用所有优化机会。努力可能会使应用程序变得困难ScaMP 项目正在开发一种新颖的编程系统,该系统为构建具有强大性能和可扩展性要求的现代应用程序提供了一种新方法,ScaMP 代表可扩展机器编程,该项目的新颖之处在于。它利用机器学习和编程语言技术的进步来捕捉高层次的用户意图,将该意图转化为有效的实现,使生成的代码在各种平台上高效执行,并支持其维护和发展.ScaMP 提供ScaMP 项目的影响将是降低开发高性能应用程序的成本。首先,增量多模态规范从自然语言和非正式图表开始,并将其细化为用安全的可堆叠智能领域特定语言编写的精确组件规范,这些 DSL 构成了系统的第二层,可以生成独立于体系结构的分布式。下一层是通过构造正确的代码生成器生成,它为多个异构架构生成编译器后端,支持生成高度优化的汇编代码,并使用 Coq 证明的翻译验证来保证正确性。这些层中的每一层都使用学习来推断硬件平台的模型和有效优化这些平台的策略,以及形式化方法,以创建程序已正确优化的证据最后一层支持生命周期监控、学习、和适应来管理开发和发展异构软件系统的更“数据科学”方面,使用测量来驱动再生和扩展更高性能的代码。该奖项反映了 NSF 的法定使命,并被认为值得通过评估获得支持利用基金会的智力优势和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saman Amarasinghe其他文献
NetBlocks: Staging Layouts for High-Performance Custom Host Network Stacks
NetBlocks:高性能自定义主机网络堆栈的分段布局
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ajay Brahmakshatriya;Chris Rinard;M. Ghobadi;Saman Amarasinghe - 通讯作者:
Saman Amarasinghe
Mechanised Hypersafety Proofs about Structured Data: Extended Version
关于结构化数据的机械化超安全证明:扩展版本
- DOI:
10.1145/3656403 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Vladimir Gladshtein;Qiyuan Zhao;Willow Ahrens;Saman Amarasinghe;Ilya Sergey - 通讯作者:
Ilya Sergey
The Continuous Tensor Abstraction: Where Indices are Real
连续张量抽象:索引为实数的地方
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jaeyeon Won;Willow Ahrens;J. Emer;Saman Amarasinghe - 通讯作者:
Saman Amarasinghe
Saman Amarasinghe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saman Amarasinghe', 18)}}的其他基金
PFI-TT: A tool to automatically generate and optimize programs to operate on complex big data
PFI-TT:自动生成和优化程序以处理复杂大数据的工具
- 批准号:
2044424 - 财政年份:2021
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Scalable High Performance with Halide and Simit Domain Specific Languages
XPS:完整:DSD:使用 Halide 和 Simit 领域特定语言的可扩展高性能
- 批准号:
1533753 - 财政年份:2015
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
Collaborative Research: Programmable Microfluidics: A Universal Substrate for Biological Computing
合作研究:可编程微流体:生物计算的通用基础
- 批准号:
0541319 - 财政年份:2006
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
NGS: StreamIt: A Language and a Compiler for Streaming Applications
NGS:StreamIt:流应用程序的语言和编译器
- 批准号:
0305453 - 财政年份:2004
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
ITR: A Language, Compilers and Tools for the Streaming Application Domain
ITR:流应用程序领域的语言、编译器和工具
- 批准号:
0325297 - 财政年份:2003
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
CISE Experimental Partnerships: MIT Raw Machine
CISE 实验合作伙伴:MIT Raw Machine
- 批准号:
0071841 - 财政年份:2000
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
相似国自然基金
开发区跨界合作网络的形成机理与区域效应:以三大城市群为例
- 批准号:42301183
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于fMRI大尺度时变网络变异性的个体ERP波形预测研究
- 批准号:82372084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
大环超分子对有机污染物及其降解中间体的自由基激发与诱导机制
- 批准号:52370168
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
抵挡汤早期干预抑制外膜滋养血管新生减轻血管钙化延缓2型糖尿病大血管病变发生的作用机制研究
- 批准号:82374247
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
利用衬底轨道过滤效应构筑大能隙二维拓扑绝缘体的研究
- 批准号:12304199
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 250万 - 项目类别:
Fellowship
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Standard Grant