PPoSS: LARGE: Intel: Combining Learning and Formal Verification for Scalable Machine Programming (ScaMP)
PPoSS:大:英特尔:结合学习和形式验证实现可扩展机器编程 (ScaMP)
基本信息
- 批准号:2217064
- 负责人:
- 金额:$ 250万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modem applications combine the need for extreme scalability with enormous complexity to provide rich functionality to millions of simultaneous users. In this context, programmer productivity is achieved by building on deep stacks of pre-existing components and systems software, allowing programmers to focus on core application logic. However, for the applications with the highest performance needs, the standard approach is not enough; instead, painstaking performance engineering effort is needed for the code to take advantage of all available accelerators and exploit all the opportunities for optimization. The cost of this effort can make applications difficult to adapt to changes in requirements or to the newly available hardware. The ScaMP project is developing a novel programming system that offers a new approach for building modern applications with strong performance and scalability requirements. ScaMP stands for Scalable Machine Programming, and the project’s novelty is the way in which it leverages advances in machine learning and programming-language technology to capture users’ intent at the high level, translate that intent into a working implementation, make the generated code perform efficiently on a variety of platforms, and support its maintenance and evolution. ScaMP provides an iterative development model that combines extremely high-level specification with fine control over low-level implementation decisions and a high degree of performance portability. The impact of the ScaMP project will be to lower the cost of developing high-performance applications. ScaMP decomposes into four main layers. First, incremental multimodal specification starts from natural language and informal diagrams and refines them into precise component specifications written in safe stackable smart domain-specific languages. These DSLs make up the second layer of the system and can generate architecture-independent distributed code through Coq-proved algebraic rewrite rules. The next layer is correct-by-construction code-generator generation, which produces compiler backends for multiple heterogeneous architectures, supporting generation of highly optimized assembly code, guaranteeing correctness using Coq-proved translation validation. Both of these layers use learning, to infer both models of hardware platforms and strategies for optimizing for those platforms effectively; as well as formal methods, to create proof that programs were optimized correctly. Finally, the last layer supports lifetime monitoring, learning, and adaptation to manage the more "data-science" side of developing and evolving a heterogeneous software system, using measurement to drive regeneration and scaling out of higher-performance code.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
调制解调器应用程序将极端可扩展性的需求与增强的复杂性相结合,为数百万个简单用户提供丰富的功能。在这种情况下,通过在预先存在的组件和系统软件的深层堆栈上构建程序员生产是实现的,从而使程序员可以专注于核心应用程序逻辑。但是,对于具有最高性能需求的应用程序,标准方法还不够。取而代之的是,代码需要艰苦的性能工程工作,以利用所有可用的加速器并利用所有优化机会。这项工作的成本可能使应用程序难以适应需求的变化或新可用的硬件。 SCAMP项目正在开发一种新颖的编程系统,该系统为建立具有强大性能和可伸缩要求的现代应用程序提供了新的方法。 SCAMP代表可扩展的机器编程,该项目的新颖性是它利用机器学习和编程语言技术的进步方式,可以在高级捕获用户的意图,将其转化为工作实现,使生成的代码在各种平台上有效地执行,并支持其维护和进化。 SCAMP提供了一个迭代开发模型,该模型将极高的高级规范与对低级实施决策和高度性能可移植性的良好控制结合在一起。 SCAMP项目的影响是降低开发高性能应用程序的成本。 Scamp分解为四个主要层。首先,增量多模式规范从自然语言和非正式图表开始,并将其完善成精确的组件规格,以安全堆叠的智能域特异性语言编写。这些DSL构成了系统的第二层,可以通过COQ-pred代数重写规则生成独立于架构的分布式代码。下一层是正确的构造代码生成器,它为多个异质体系结构生成编译器的后端,支持生成高度优化的装配代码,并使用COQ-pred-pread的翻译验证确保正确性。这两种层都使用学习,推断硬件平台的两个模型和为这些平台有效优化的策略;以及正式方法,以创建证明程序已正确优化。最后,最后一层支持终身监控,学习和适应,以管理开发和发展的“数据科学”方面,使用衡量方法来推动再生和扩大更高表现的代码。这项奖项反映了NSF的法定任务,并通过评估基础的Merit和Broadial和广泛的评估,以表现出珍贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saman Amarasinghe其他文献
NetBlocks: Staging Layouts for High-Performance Custom Host Network Stacks
NetBlocks:高性能自定义主机网络堆栈的分段布局
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ajay Brahmakshatriya;Chris Rinard;M. Ghobadi;Saman Amarasinghe - 通讯作者:
Saman Amarasinghe
Mechanised Hypersafety Proofs about Structured Data: Extended Version
关于结构化数据的机械化超安全证明:扩展版本
- DOI:
10.1145/3656403 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Vladimir Gladshtein;Qiyuan Zhao;Willow Ahrens;Saman Amarasinghe;Ilya Sergey - 通讯作者:
Ilya Sergey
The Continuous Tensor Abstraction: Where Indices are Real
连续张量抽象:索引为实数的地方
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jaeyeon Won;Willow Ahrens;J. Emer;Saman Amarasinghe - 通讯作者:
Saman Amarasinghe
Saman Amarasinghe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saman Amarasinghe', 18)}}的其他基金
PFI-TT: A tool to automatically generate and optimize programs to operate on complex big data
PFI-TT:自动生成和优化程序以处理复杂大数据的工具
- 批准号:
2044424 - 财政年份:2021
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Scalable High Performance with Halide and Simit Domain Specific Languages
XPS:完整:DSD:使用 Halide 和 Simit 领域特定语言的可扩展高性能
- 批准号:
1533753 - 财政年份:2015
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
Collaborative Research: Programmable Microfluidics: A Universal Substrate for Biological Computing
合作研究:可编程微流体:生物计算的通用基础
- 批准号:
0541319 - 财政年份:2006
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
NGS: StreamIt: A Language and a Compiler for Streaming Applications
NGS:StreamIt:流应用程序的语言和编译器
- 批准号:
0305453 - 财政年份:2004
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
ITR: A Language, Compilers and Tools for the Streaming Application Domain
ITR:流应用程序领域的语言、编译器和工具
- 批准号:
0325297 - 财政年份:2003
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
CISE Experimental Partnerships: MIT Raw Machine
CISE 实验合作伙伴:MIT Raw Machine
- 批准号:
0071841 - 财政年份:2000
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
相似国自然基金
基于大塑性变形晶粒细化的背压触变反挤压锡青铜偏析行为调控研究
- 批准号:52365047
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
面向大跨度结构的高强多孔骨料内养护UHPC徐变性能与模型研究
- 批准号:52308231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度光学的大视场高分辨宽景深小型化显微成像
- 批准号:62301293
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
基于气体多通腔多模非线性效应的大能量可调谐光源的研究
- 批准号:12374318
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
二维氮化钼/磷化钼面内异质结构催化材料的设计合成及大电流密度析氢性能研究
- 批准号:22379116
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 250万 - 项目类别:
Fellowship
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Standard Grant