CAREER: Harnessing Mineralogy and Polymer Science to Elucidate Mechanisms and Mitigation Strategies for Mineral Scaling in Membrane Desalination

职业:利用矿物学和聚合物科学阐明膜淡化中矿物结垢的机制和缓解策略

基本信息

  • 批准号:
    2145627
  • 负责人:
  • 金额:
    $ 51.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Membrane-based technologies such as reverse osmosis (RO) are increasingly being utilized to provide clean water in the United States and worldwide under a rapidly changing climate and growing water scarcity. Currently, RO is the best available commercial technology for extracting and recovering clean water from a wide range of impaired water sources including seawater, inland brackish water, and municipal/industrial wastewater. However, the formation and precipitation of inorganic scales at the surface of RO membranes severely limit their water recovery and adversely impact the overall process efficiency and cost of water produced by RO desalination and water reuse plants. Compared to organic/biological membrane fouling, the mechanisms of formation and precipitation of inorganic scales at RO membrane surfaces are poorly understood as they involve complex chemical reactions and nucleation phenomena at polymer-mineral-water interfaces. The overarching goal of this CAREER project is to advance the fundamental understanding of mineral scaling at the surface of RO membranes. The successful completion of this project will benefit society through the development of new fundamental knowledge to advance the development and implementation of more efficient and cost-effective solutions to control and mitigate mineral scaling in RO desalination and water reuse systems. Further benefits to society will be achieved through student education and training including the mentoring of a graduate student and an undergraduate student at Colorado State University.Membrane scaling remains an important and unresolved challenge that limits the water recovery and overall system efficiency of commercial reverse osmosis (RO) desalination and water reuse plants. There are still critical knowledge gaps in the fundamental understanding of RO membrane scaling. First, the key physical/chemical processes and factors that control the extent of mineral scaling in RO membranes are not well understood. Second, the utilization of surface modification to mitigate mineral scaling in RO membranes has met with only limited success. Third, there is a lack of fundamental knowledge and principles to guide the design of antiscalants to mitigate the formation and precipitation of amorphous silica scales in RO membranes. This CAREER proposal will address these critical knowledge gaps. The guiding hypothesis of the proposed research is that polymers used as RO membrane surface modifiers or antiscalants can control the extent of mineral scaling by altering the thermodynamics and kinetics of scale nucleation events at membrane-water interfaces and the subsequent attachments of nascent mineral scales to membrane surfaces. Two key goals of the research are to: (1) Characterize and unravel the roles of scale nucleation thermodynamics, kinetics, and mineral-membrane affinity on the extent of RO membrane scaling and (2) Develop structure-property-performance relationships to guide and inform the design of scaling-resistant RO membranes and polymeric antiscalants to minimize and prevent RO membrane scaling. The successful completion of this project has the potential for transformative impact through the generation of new fundamental knowledge to advance the development of more effective strategies to control and mitigate membrane scaling in RO desalination and water reuse plants. To implement the educational and training goals of this CAREER project, the Principal Investigator (PI) will work with the Native American STEM Institute of Colorado State University (CSU) to develop and implement lectures and hands-on experiments for Native American high school students to learn about the critical science and engineering of challenges around water sustainability including the desalination of seawater and brackish water. In addition, the PI plans to partner with the ENpower Bridge program of CSU’s Engineering College to encourage and recruit students from underrepresented groups to pursue undergraduate/graduate education in Environmental Engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在快速变化的气候和日益严重的水资源短缺的情况下,反渗透 (RO) 等基于膜的技术越来越多地被用于在美国和世界范围内提供清洁水,目前,反渗透是提取和回收清洁水的最佳可用商业技术。然而,反渗透膜表面无机垢的形成和沉淀严重限制了其水回收,并对水产生不利影响。与有机/生物膜污染相比,RO 海水淡化和水回用厂生产的水的整体工艺效率和成本,人们对 RO 膜表面无机垢的形成和沉淀机制知之甚少,因为它们涉及复杂的化学反应和成核现象。该职业项目的总体目标是增进对反渗透膜表面矿物结垢的基本了解,该项目的成功完成将通过开发新的基础知识来造福社会。开发和实施更先进、更具成本效益的解决方案,以控制和减轻反渗透海水淡化和水回用系统中的有效矿物结垢,将通过学生教育和培训(包括对研究生和本科生的指导)实现进一步的社会效益。膜结垢仍然是一个重要且尚未解决的挑战,限制了商业反渗透 (RO) 海水淡化和水回用工厂的水回收和整体系统效率。对 RO 膜结垢的基本理解仍然存在关键的知识差距。首先,控制反渗透膜中矿物质结垢程度的关键物理/化学过程和因素尚不清楚;其次,利用表面改性来减轻反渗透膜中的矿物质结垢仅取得有限的成功。缺乏指导阻垢剂设计以减轻反渗透膜中无定形二氧化硅垢的形成和沉淀的基础知识和原则。本职业提案将解决这些关键知识差距。该研究的指导假设是聚合物用作反渗透膜。膜表面改性剂或阻垢剂可以通过改变膜-水界面处水垢成核事件的热力学和动力学以及随后新生矿物垢在膜表面的附着来控制矿物结垢的程度,该研究的两个关键目标是:(1)表征并揭示结垢成核热力学、动力学和矿物膜亲和力对 RO 膜结垢程度的作用,以及 (2) 建立结构-性能-性能关系指导和指导抗结垢反渗透膜和聚合物阻垢剂的设计,以最大限度地减少和防止反渗透膜结垢。该项目的成功完成有可能通过产生新的基础知识来推动更有效策略的开发,从而产生变革性影响。控制和减轻 RO 海水淡化和水回用厂中的膜结垢 为了实现该职业项目的教育和培训目标,首席研究员 (PI) 将与科罗拉多州立大学 (CSU) 的美国原住民 STEM 研究所合作开发和开发。实施讲座以及为美国原住民高中生进行实践实验,以了解水可持续性挑战的关键科学和工程,包括海水和咸水淡化。此外,PI 计划与科罗拉多州立大学工程学院的 ENpower Bridge 项目合作。鼓励和招收代表性不足群体的学生攻读环境工程本科/研究生教育。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Which Surface Is More Scaling Resistant? A Closer Look at Nucleation Theories for Heterogeneous Gypsum Nucleation in Aqueous Solutions
哪种表面更耐结垢?
  • DOI:
    10.1021/acs.est.2c06560
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Yin, Yiming;Li, Tianshu;Zuo, Kuichang;Liu, Xitong;Lin, Shihong;Yao, Yiqun;Tong, Tiezheng
  • 通讯作者:
    Tong, Tiezheng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tiezheng Tong其他文献

Activity and Water Footprint of Unconventional Energy Production under Hydroclimate Variation in Colorado
科罗拉多州水文气候变化下非常规能源生产的活动和水足迹
  • DOI:
    10.1021/acsestwater.0c00064
  • 发表时间:
    2020-10-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xuewei Du;Huishu Li;Cristian A. Robbins;K. Carlson;Tiezheng Tong
  • 通讯作者:
    Tiezheng Tong
Acute Effects of TiO 2 Nanomaterials on the Viability and Taxonomic Composition of Aquatic Bacterial Communities Assessed via High-Throughput Screening and Next Generation Sequencing
通过高通量筛选和下一代测序评估 TiO 2 纳米材料对水生细菌群落活力和分类组成的急性影响
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. T. Binh;Tiezheng Tong;J. Gaillard;K. Gray;J. Kelly
  • 通讯作者:
    J. Kelly
Electrochemical Oxidation of Hexafluoropropylene Oxide Dimer Acid (GenX): Mechanistic Insights and Efficient Treatment Train with Nanofiltration.
六氟丙烯氧化物二聚酸 (GenX) 的电化学氧化:机理见解和纳滤高效处理系列。
  • DOI:
    10.1021/acs.est.9b03171
  • 发表时间:
    2019-10-10
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Nasim E. Pica;J. Funkhouser;Yiming Yin;Zuoyou Zhang;Donato M. Ceres;Tiezheng Tong;J. Blotevogel
  • 通讯作者:
    J. Blotevogel
A non-substrate-specific technique of antifouling and antiwetting Janus membrane fabrication for membrane distillation
用于膜蒸馏的防污和防润湿 Janus 膜制造的非基材特异性技术
  • DOI:
    10.1016/j.desal.2023.117195
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Sifat Kalam;Abhishek Dutta;Xuewei Du;Xuesong Li;Tiezheng Tong;Jongho Lee
  • 通讯作者:
    Jongho Lee
Long-Chain PFASs-Free Omniphobic Membranes for Sustained Membrane Distillation.
用于持续膜蒸馏的不含长链 PFAS 的全疏膜。
  • DOI:
    10.1021/acsami.2c01499
  • 发表时间:
    2022-05-10
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Xuewei Du;Mohammad Alipanahrostami;Wei Wang;Tiezheng Tong
  • 通讯作者:
    Tiezheng Tong

Tiezheng Tong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tiezheng Tong', 18)}}的其他基金

Collaborative Research: A Bioinspired Approach towards Sustainable Membranes for Resilient Brine Treatment
合作研究:用于弹性盐水处理的可持续膜的仿生方法
  • 批准号:
    2226505
  • 财政年份:
    2022
  • 资助金额:
    $ 51.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the Coupling of Inorganic Scaling and Organic Fouling in Reverse Osmosis Desalination: An Integrated Experimental and Computational Approach
合作研究:阐明反渗透海水淡化中无机结垢和有机污垢的耦合:一种综合实验和计算方法
  • 批准号:
    2143970
  • 财政年份:
    2022
  • 资助金额:
    $ 51.92万
  • 项目类别:
    Standard Grant

相似国自然基金

小型化钙离子光钟驾驭汞离子微波钟守时系统研究
  • 批准号:
    U21A20431
  • 批准年份:
    2021
  • 资助金额:
    260 万元
  • 项目类别:
铯基准钟与守时型原子钟联合守时方法研究
  • 批准号:
    11773030
  • 批准年份:
    2017
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
氢钟和铯钟联合守时研究
  • 批准号:
    11303032
  • 批准年份:
    2013
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
心肌细胞持续性钠电流数学建模与钠离子通道病仿真研究
  • 批准号:
    61001167
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
驾驭式可视化中成象技术的研究
  • 批准号:
    69903009
  • 批准年份:
    1999
  • 资助金额:
    14.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Harnessing creative heritage for migrant wellbeing in museums and libraries
利用博物馆和图书馆的创意遗产促进移民福祉
  • 批准号:
    DE240100336
  • 财政年份:
    2024
  • 资助金额:
    $ 51.92万
  • 项目类别:
    Discovery Early Career Researcher Award
Harnessing the power of ordinary people to prevent cyber abuse
利用普通人的力量来防止网络滥用
  • 批准号:
    DE240100080
  • 财政年份:
    2024
  • 资助金额:
    $ 51.92万
  • 项目类别:
    Discovery Early Career Researcher Award
Harnessing the Power of Diels-Alderases in Sustainable Chemoenzymatic Synthesis
利用 Diels-Alderases 进行可持续化学酶合成
  • 批准号:
    BB/Y000846/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.92万
  • 项目类别:
    Research Grant
MEtaGenome-informed Antimicrobial resistance Surveillance: Harnessing long-read sequencing for an analytical, indicator and risk assessment framework
基于 MEtaGenome 的抗菌药物耐药性监测:利用长读长测序构建分析、指标和风险评估框架
  • 批准号:
    MR/Y034457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.92万
  • 项目类别:
    Research Grant
CAREER: Foundational Principles for Harnessing Provenance Analytics for Advanced Enterprise Security
职业:利用来源分析实现高级企业安全的基本原则
  • 批准号:
    2339483
  • 财政年份:
    2024
  • 资助金额:
    $ 51.92万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了