CAREER: Randomized Multiscale Methods for Heterogeneous Nonlinear Partial Differential Equations

职业:异质非线性偏微分方程的随机多尺度方法

基本信息

  • 批准号:
    2145364
  • 负责人:
  • 金额:
    $ 46.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Heterogeneous systems with salient features at multiple scales are ubiquitous in science and engineering. A direct numerical simulation that aims at capturing relevant phenomena at all scales requires an often prohibitively large amount of computation time. To simulate such systems, multiscale methods include the local behavior of a numerical solution in the approximation process, thus taking into account the various scales. For example, in modeling a wind turbine made from composites, deformations during operation can be simulated for portions of the wind turbine blade. The multiscale approximation for the deformation of the whole wind turbine is then built from these local solutions. Multiscale methods that can guarantee that the error between the multiscale approximation and the global solution is below a given tolerance are of particular interest. The goal of this project is to design and analyze such multiscale methods for the numerical solution of nonlinear partial differential equations that are used in simulating deformations in (realistic) wind turbines. It is anticipated that the new methods will be crucial in building digital twins, that is, mathematical models of physical objects that can be employed in real time to assess, for example, the structural health of a system. Application of the results in digital twins for wind turbines will support the generation of renewable energy for society. The project includes a closely integrated educational plan to increase participation and retention of students from groups underrepresented in STEM by (i) designing and leading courses for high school students, helping them discover via creative and project-based learning techniques how the concepts of mathematics they are learning have important applications; and (ii) establishing a mentoring program for undergraduate mathematics students from underrepresented groups.To develop the desired multiscale methods, in this project, the local ansatz functions will be constructed to (quasi-)optimally approximate the nonlinear set of local solutions of the partial differential equation (PDE). To approximate the latter, randomized versions of model order reduction methods will be developed. While deterministic model reduction algorithms construct provably the optimal space to approximate a set of solutions of a PDE dependent on a parameter (here arbitrary Dirichlet boundary data), they suffer from the curse of dimensionality for high-dimensional parameter sets. Randomizing these methods is expected to break the curse of dimensionality and allow analysis of the error in novel ways suitable for nonlinear systems. The three research objectives of the project are: development and analysis of randomized multiscale methods for (i) elliptic and (ii) parabolic nonlinear PDEs, where the local ansatz functions can be constructed parallel in time, and (iii) application to the simulation of the deformation of wind turbines.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金根据《2021 年美国救援计划法案》(公法 117-2)提供。在多个尺度上具有显着特征的异构系统在科学和工程中普遍存在。旨在捕获所有尺度的相关现象的直接数值模拟通常需要大量的计算时间。为了模拟此类系统,多尺度方法在近似过程中包括数值解的局部行为,从而考虑到各种尺度。例如,在对由复合材料制成的风力涡轮机进行建模时,可以针对风力涡轮机叶片的部分来模拟运行期间的变形。然后根据这些局部解建立整个风力涡轮机变形的多尺度近似。能够保证多尺度近似与全局解之间的误差低于给定容差的多尺度方法特别令人感兴趣。该项目的目标是设计和分析用于模拟(现实)风力涡轮机变形的非线性偏微分方程数值求解的多尺度方法。预计新方法对于构建数字孪生至关重要,即可以实时使用物理对象的数学模型来评估系统的结构健康状况等。将结果应用于风力涡轮机的数字孪生将支持社会可再生能源的产生。该项目包括一个紧密结合的教育计划,通过以下方式提高 STEM 中代表性不足群体的学生的参与度和保留率:(i) 为高中生设计和引导课程,帮助他们通过创造性和基于项目的学习技术发现数学概念如何在他们的学习中得到体现。学习有重要的应用吗? (ii) 为来自代表性不足群体的本科数学学生建立一个指导计划。为了开发所需的多尺度方法,在该项目中,将构造局部 ansatz 函数以(准)最优地逼近部分局部解的非线性集合微分方程(PDE)。为了近似后者,将开发模型降阶方法的随机版本。虽然确定性模型简化算法可证明构建最佳空间来近似依赖于参数(此处为任意狄利克雷边界数据)的偏微分方程的一组解,但它们遭受高维参数集的维数灾难。随机化这些方法有望打破维数灾难,并允许以适合非线性系统的新颖方式分析误差。该项目的三个研究目标是:开发和分析 (i) 椭圆和 (ii) 抛物线非线性偏微分方程的随机多尺度方法,其中局部 ansatz 函数可以在时间上并行构造,以及 (iii) 应用于模拟该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Localized Model Reduction for Nonlinear Elliptic Partial Differential Equations: Localized Training, Partition of Unity, and Adaptive Enrichment
非线性椭圆偏微分方程的局部模型简化:局部训练、统一划分和自适应丰富
  • DOI:
    10.1137/22m148402x
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Smetana, Kathrin;Taddei, Tommaso
  • 通讯作者:
    Taddei, Tommaso
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathrin Smetana其他文献

Model order reduction for seismic applications
地震应用的模型降阶
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rhys Hawkins;Muhammad Hamza Khalid;Matthias Schlottbom;Kathrin Smetana
  • 通讯作者:
    Kathrin Smetana

Kathrin Smetana的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

不确定潜能的克隆性造血与急性缺血性卒中功能预后的孟德尔随机化研究
  • 批准号:
    82301481
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于双生子孟德尔随机化的SGLT2抑制剂与冠心病的关联及其通路研究
  • 批准号:
    82304223
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于遗传大数据探究外周血白细胞计数与帕金森病的因果关系:孟德尔随机化研究和遗传风险评分分析
  • 批准号:
    82301434
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于孟德尔随机化法和随机回归模型建立纵向性状全转录组关联分析新方法
  • 批准号:
    32370675
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于随机化的高效可扩展深度学习算法研究
  • 批准号:
    62376131
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

DATA ANALYSIS AND STATISTICAL PROGRAMING SUPPORT (BASE CONTRACT) COMPANY: PROSPECTIVE GROUP
数据分析和统计编程支持(基础合同)公司:PROSPECTIVE GROUP
  • 批准号:
    10371011
  • 财政年份:
    2021
  • 资助金额:
    $ 46.2万
  • 项目类别:
Circadian Multiscale Activity Regulation and the Risk for Delirium in Elderly Hospitalized Patients
昼夜节律多尺度活动调节和老年住院患者谵妄的风险
  • 批准号:
    10027773
  • 财政年份:
    2020
  • 资助金额:
    $ 46.2万
  • 项目类别:
DATA ANALYSIS AND STATISTICAL PROGRAMING SUPPORT (BASE CONTRACT) COMPANY: PROSPECTIVE GROUP
数据分析和统计编程支持(基础合同)公司:PROSPECTIVE GROUP
  • 批准号:
    10119208
  • 财政年份:
    2020
  • 资助金额:
    $ 46.2万
  • 项目类别:
Dissecting the impact of clonal hematopoiesis on atherosclerosis using multiscale 'omics
使用多尺度组学剖析克隆造血对动脉粥样硬化的影响
  • 批准号:
    10023170
  • 财政年份:
    2019
  • 资助金额:
    $ 46.2万
  • 项目类别:
Operationalizing Behavioral Theory for mHealth: Dynamics, Context, and Personalization
移动医疗行为理论的实施:动态、情境和个性化
  • 批准号:
    10005898
  • 财政年份:
    2018
  • 资助金额:
    $ 46.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了