CAREER: Understanding Bond Formation, Microstructural Development and Mechanical Properties in Cold Spray Additive Manufacturing – A Unified Experimental and Numerical Approach

职业:了解冷喷涂增材制造中的键形成、微观结构发展和机械性能——统一的实验和数值方法

基本信息

  • 批准号:
    2145326
  • 负责人:
  • 金额:
    $ 64.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

Melting-based additive manufacturing (AM) has been utilized for high-value metallic component manufacture. Limitations exist, however, due to the high process temperatures, (often beyond the melting point of component materials), and the large associated thermal gradients and rapid cooling rates. On the other hand, non-melting metal AM such as cold spray technology, in which tiny powder particles are accelerated to a supersonic speed to collide, bond to and build up underlying materials upon impact, may considerably alleviate the melting-rooted challenges. This Faculty Early Career Development (CAREER) award supports research in developing a fundamental understanding of the process-microstructure-property relationships for cold spray AM using novel high-speed single-particle impact testing, complemented by multi-scale numerical modeling, to study individual bonded particles, the building blocks of the cold spray process, and then expand to a part-level study. The research will enable reliable and performance-oriented processing design for cold spray AM, with a potential to strengthen the Nation’s defense and other industries through enabling sustainable and agile manufacturing and repair at the point of need. The knowledge gained may also be translated to other solid-state joining or additive technologies for aerospace, construction and energy applications. The team will engage K-12 students and educators through hands-on activities with a designed additive manufacturing toolkit. The project will also promote participation from underrepresented minority students in advanced manufacturing through 10-week summer camps in a research laboratory.The overall goal of this CAREER project is to establish a unified framework to understand and predict the critical velocity, impact-induced microstructural development, micro-scale bond strength, and macro-scale mechanical properties of cold-sprayed deposits. Laser-induced micro-scale projectile impact testing will be conducted with high-resolution imaging to produce well-defined high-velocity individual bonded particles, with microstructures and properties characterized by advanced electron microscopy and micro-mechanical measurements. Both the first layer impacts and particle impacts on subsequent layers will be systematically investigated. The role of the impact velocity, oxide layer thickness, particle size and temperature, and impact angle in the characteristics of bonded interfaces and local bond strengths will be scientifically revealed. Further, finite element modeling incorporating a dislocation-based constitutive model, oxide layer fracture, and cohesive bonding will be established, which will be used to predict the impact-induced microstructure changes and bond strengths. The micro-scale simulations will inform a macro-scale model to calculate the mechanical properties of cold-sprayed specimens. Different sources of statistical effects resulting from the distribution of particle sizes, temperatures, and oxide layer thicknesses will also be considered in the multi-scale model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
然而,基于熔融的增材制造 (AM) 已用于高价值金属部件的制造,但由于工艺温度高(通常超出部件材料的熔点)以及相关的大热梯度和快速加热,因此存在局限性。另一方面,非熔融金属增材制造(例如冷喷涂技术)可以将微小粉末颗粒加速到超音速,在撞击时碰撞、粘合并堆积底层材料,从而可以缓解源自熔融的挑战。这个学院早职业发展 (CAREER) 奖支持研究人员使用新颖的高速单颗粒冲击测试,并辅以多尺度数值建模,对冷喷涂增材制造的工艺-微观结构-性能关系有一个基本的了解,以研究单个粘合颗粒,该研究将为冷喷涂增材制造提供可靠且以性能为导向的加工设计,并有可能通过实现可持续和其他工业来加强国家国防和其他工业。现场敏捷制造和维修所获得的知识也可以转化为航空航天、建筑和能源应用的其他固态连接或增材技术,该团队将通过设计的增材制造工具包让 K-12 学生和教育工作者参与其中。还将通过在研究实验室进行为期 10 周的夏令营,促进代表性不足的少数族裔学生参与先进制造。该职业项目的总体目标是建立一个统一的框架,以了解和预测临界速度、冲击引起的微观结构发展、微观规模债券冷喷涂沉积物的强度和宏观机械性能将通过高分辨率成像进行激光诱导的微尺度弹丸冲击测试,以产生明确的高速单个粘合颗粒,其微观结构和性能具有先进的特征。电子显微镜和微机械测量将系统地研究冲击速度、氧化层厚度、颗粒尺寸和温度以及冲击角度在粘合界面特性中的作用。此外,将建立结合基于位错的本构模型、氧化层断裂和内聚结合的有限元模型,用于预测冲击引起的微观结构变化和微观结合强度。尺度模拟将为宏观尺度模型提供信息,以计算冷喷涂样品的机械性能,在多尺度中也将考虑由颗粒尺寸、温度和氧化层厚度的分布产生的统计效应的不同来源。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying dislocation drag at high strain rates with laser-induced Microprojectile impact
通过激光诱导微弹撞击量化高应变率下的位错阻力
  • DOI:
    10.1016/j.ijplas.2024.103924
  • 发表时间:
    2024-04
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Tang, Qi;Hassani, Mostafa
  • 通讯作者:
    Hassani, Mostafa
Surface oxide layer strengthening and fracture during flattening of powder particles
粉末颗粒压扁过程中的表面氧化层强化和断裂
  • DOI:
    10.1016/j.scriptamat.2024.116008
  • 发表时间:
    2024-04
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Tang, Qi;Ichikawa, Yuji;Hassani, Mostafa
  • 通讯作者:
    Hassani, Mostafa
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mostafa Hassani其他文献

Quantifying Dislocation Drag at High Strain Rates with Laser-Induced Microprojectile Impact
通过激光诱导微弹撞击量化高应变率下的位错阻力
  • DOI:
    10.1016/j.ijplas.2024.103924
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Qi Tang;Mostafa Hassani
  • 通讯作者:
    Mostafa Hassani
Edge-combining multi-phase DLL frequency multiplier with reduced static phase offset and linearized delay transfer curve
具有减少静态相位偏移和线性化延迟传输曲线的边缘组合多相 DLL 倍频器
Edge-combining multi-phase DLL frequency multiplier with reduced static phase offset and linearized delay transfer curve
具有减少静态相位偏移和线性化延迟传输曲线的边缘组合多相 DLL 倍频器

Mostafa Hassani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mostafa Hassani', 18)}}的其他基金

Collaborative Research: Solid-State Additive Manufacturing of Metal Matrix Composites via Cold Spray
合作研究:通过冷喷涂进行金属基复合材料的固态增材制造
  • 批准号:
    2330319
  • 财政年份:
    2024
  • 资助金额:
    $ 64.87万
  • 项目类别:
    Standard Grant

相似国自然基金

面向开放场景的多模态视频表征与理解研究
  • 批准号:
    62376069
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
玉米苞叶数目主效QTL基因qHLN1的图位克隆和遗传机理解析
  • 批准号:
    32370672
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
假单胞菌木质素解聚酶系催化、分泌机理解析,以构建木质素产能细胞工厂
  • 批准号:
    32370115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向智能化仿真社会实验的具身人物视觉理解与身份构建
  • 批准号:
    62302296
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding the role of lipids in structure and function of membrane proteins
了解脂质在膜蛋白结构和功能中的作用
  • 批准号:
    10413702
  • 财政年份:
    2022
  • 资助金额:
    $ 64.87万
  • 项目类别:
Understanding the role of lipids in structure and function of membrane proteins
了解脂质在膜蛋白结构和功能中的作用
  • 批准号:
    10703408
  • 财政年份:
    2022
  • 资助金额:
    $ 64.87万
  • 项目类别:
Understanding the Ligand Binding by Non-Heme Fe(II)- and 2-Oxoglutarate-Dependent Histone Demethylases
了解非血红素 Fe(II) 和 2-氧化戊二酸依赖性组蛋白去甲基酶的配体结合
  • 批准号:
    10202877
  • 财政年份:
    2021
  • 资助金额:
    $ 64.87万
  • 项目类别:
Understanding peptide bond formation in non-ribosomal peptide biosynthesis
了解非核糖体肽生物合成中肽键的形成
  • 批准号:
    DP210101752
  • 财政年份:
    2021
  • 资助金额:
    $ 64.87万
  • 项目类别:
    Discovery Projects
Understanding the neural basis of social attachment
了解社会依恋的神经基础
  • 批准号:
    10417233
  • 财政年份:
    2020
  • 资助金额:
    $ 64.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了