CAREER: Exploiting Low-Dimensional Structures in Data Science: Manifold Learning, Partial Differential Equation Identification, and Neural Networks
职业:在数据科学中利用低维结构:流形学习、偏微分方程识别和神经网络
基本信息
- 批准号:2145167
- 负责人:
- 金额:$ 48.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). In general, scientific and engineering data can be high-dimensional, but in many practical applications, data exhibit low-dimensional features due to local regularities, global symmetries, or repetitive patterns. This project aims to develop new theoretical and computational tools to exploit low-dimensional structures in data science. The overall goal is to develop improved computational algorithms for machine learning with high-dimensional datasets that have additional structure. Machine learning research will also be integrated with data science education, including a bridge program that aims to help prepare undergraduate students with diverse backgrounds for careers in both industry and academia.This project aims to make fundamental mathematical, statistical, and computational advances in analysis of high-dimensional data with structures. Research directions include manifold learning, identification of partial differential equations, and a nonparametric estimation theory for neural networks. This work focuses on three sets of related but distinct questions. The first set is about efficient approximation of functions supported on and near a low-dimensional manifold. Efficient algorithms will be developed to build local linear approximations of the manifold and polynomial approximations of the function. A theoretical goal is to prove that the function estimation error converges to zero as the sample size grows with a fast rate depending on the intrinsic dimension of the manifold. The second set is on robust PDE identification from noisy data. The PI will combine tools in machine learning and numerical PDEs to explore noisy data and robustly identify the underlying PDE and dynamics. This project will address denoising, recovery of spatially varying parameters, and kernel identification in nonlocal equations. The third set of questions concerns nonparametric estimation theory for neural networks for learning operators between infinite dimensional function spaces. The work aims to provide an upper bound for the error in estimation of Lipschitz operators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金根据《2021 年美国救援计划法案》(公法 117-2)提供。一般来说,科学和工程数据可以是高维的,但在许多实际应用中,数据由于局部规律性、全局对称性或重复模式而表现出低维特征。该项目旨在开发新的理论和计算工具来利用数据科学中的低维结构。总体目标是开发改进的计算算法,用于具有附加结构的高维数据集的机器学习。机器学习研究还将与数据科学教育相结合,包括一个桥梁计划,旨在帮助具有不同背景的本科生为工业界和学术界的职业做好准备。该项目旨在在分析数据科学方面取得基础数学、统计和计算方面的进展。具有结构的高维数据。研究方向包括流形学习、偏微分方程的辨识以及神经网络的非参数估计理论。这项工作重点关注三组相关但不同的问题。第一组是关于低维流形上及其附近支持的函数的有效近似。将开发有效的算法来构建流形的局部线性近似和函数的多项式近似。理论目标是证明随着样本量的快速增长(取决于流形的固有维数),函数估计误差会收敛到零。第二组是从噪声数据中进行稳健的 PDE 识别。 PI 将结合机器学习和数值偏微分方程中的工具来探索噪声数据并可靠地识别潜在的偏微分方程和动力学。该项目将解决非局部方程中的去噪、空间变化参数的恢复以及核识别问题。第三组问题涉及用于学习无限维函数空间之间算子的神经网络的非参数估计理论。这项工作旨在为 Lipschitz 算子的估计误差提供上限。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep nonparametric estimation of intrinsic data structures by chart autoencoders: Generalization error and robustness
通过图表自动编码器对内在数据结构进行深度非参数估计:泛化误差和鲁棒性
- DOI:10.1016/j.acha.2023.101602
- 发表时间:2024-01
- 期刊:
- 影响因子:2.5
- 作者:Liu, Hao;Havrilla, Ale;Lai, Rongjie;Liao, Wenjing
- 通讯作者:Liao, Wenjing
Multiscale regression on unknown manifolds
未知流形的多尺度回归
- DOI:10.3934/mine.2022028
- 发表时间:2022-01
- 期刊:
- 影响因子:1
- 作者:Liao, Wenjing;Maggioni, Mauro;Vigogna, Stefano
- 通讯作者:Vigogna, Stefano
WeakIdent: Weak formulation for identifying differential equation using narrow-fit and trimming
WeakIdent:使用窄拟合和修剪识别微分方程的弱公式
- DOI:10.1016/j.jcp.2023.112069
- 发表时间:2023-06
- 期刊:
- 影响因子:4.1
- 作者:Tang, Mengyi;Liao, Wenjing;Kuske, Rachel;Kang, Sung Ha
- 通讯作者:Kang, Sung Ha
Numerical Identification of Nonlocal Potentials in Aggregation
聚合中非局部势的数值识别
- DOI:10.4208/cicp.oa-2021-0177
- 发表时间:2022-08
- 期刊:
- 影响因子:3.7
- 作者:He, Yuchen;Kang, Sung Ha;Liao, Wenjing;null, Hao Liu;Liu, Yingjie
- 通讯作者:Liu, Yingjie
Group Projected subspace pursuit for IDENTification of variable coefficient differential equations (GP-IDENT)
变系数微分方程辨识的群投影子空间追踪 (GP-IDENT)
- DOI:10.1016/j.jcp.2023.112526
- 发表时间:2023-12
- 期刊:
- 影响因子:4.1
- 作者:He, Yuchen;Kang, Sung Ha;Liao, Wenjing;Liu, Hao;Liu, Yingjie
- 通讯作者:Liu, Yingjie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenjing Liao其他文献
Potential prebiotic effects of nonabsorptive components of Keemun and Dianhong black tea: an in vitro study
祁门红茶和滇红红茶非吸收性成分的潜在益生元作用:一项体外研究
- DOI:
10.1016/j.fshw.2021.12.022 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:7
- 作者:
Wenjing Liao;Wenjiao Li;Suyu Liu;D. Tang;Yunxin Chen;Yijun Wang;Zhongwen Xie;Jinbao Huang - 通讯作者:
Jinbao Huang
Numerical Identification of Nonlocal Potential in Aggregation
聚合中非局部势的数值识别
- DOI:
10.4208/cicp.oa-2021-0177 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:0
- 作者:
Yuchen He;S. Kang;Wenjing Liao;Hao Liu;Yingjie Liu - 通讯作者:
Yingjie Liu
Learning functions varying along an active subspace.
学习函数沿着活动子空间变化。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hao Liu;Wenjing Liao - 通讯作者:
Wenjing Liao
A Manifold Two-Sample Test Study: Integral Probability Metric with Neural Networks
流形二样本检验研究:神经网络的积分概率度量
- DOI:
10.48550/arxiv.2205.02043 - 发表时间:
2022-05-04 - 期刊:
- 影响因子:0
- 作者:
Jie Wang;Minshuo Chen;Tuo Zhao;Wenjing Liao;Yao Xie - 通讯作者:
Yao Xie
High dimensional binary classification under label shift: phase transition and regularization
标签移位下的高维二元分类:相变和正则化
- DOI:
10.1007/s43670-023-00071-9 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:0
- 作者:
Jiahui Cheng;Minshuo Chen;Hao Liu;Tuo Zhao;Wenjing Liao - 通讯作者:
Wenjing Liao
Wenjing Liao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenjing Liao', 18)}}的其他基金
Deep Neural Networks for Structured Data: Regression, Distribution Estimation, and Optimal Transport
用于结构化数据的深度神经网络:回归、分布估计和最优传输
- 批准号:
2012652 - 财政年份:2020
- 资助金额:
$ 48.14万 - 项目类别:
Standard Grant
Analysis and Recovery of High-Dimensional Data with Low-Dimensional Structures
低维结构高维数据的分析与恢复
- 批准号:
1818751 - 财政年份:2018
- 资助金额:
$ 48.14万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 48.14万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
- 批准号:
2155097 - 财政年份:2022
- 资助金额:
$ 48.14万 - 项目类别:
Standard Grant
CAS: Exploiting Spin in Photo-induced Chemistry: Fundamental Explorations of High-spin and Low-spin Transition Metals in Long-lived Charge Separated States and Oxidative Catalysis
CAS:利用光诱导化学中的自旋:长寿命电荷分离态和氧化催化中高自旋和低自旋过渡金属的基础探索
- 批准号:
2153862 - 财政年份:2022
- 资助金额:
$ 48.14万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
- 批准号:
2155096 - 财政年份:2022
- 资助金额:
$ 48.14万 - 项目类别:
Standard Grant
Low power explosive detection exploiting the time domain
利用时域的低功率爆炸物检测
- 批准号:
NS220100020 - 财政年份:2022
- 资助金额:
$ 48.14万 - 项目类别:
National Intelligence and Security Discovery Research Grants