CAREER: Advancing the Many-body Band Inversion Paradigm for Correlated Quantum Materials
职业:推进相关量子材料的多体能带反演范式
基本信息
- 批准号:2144352
- 负责人:
- 金额:$ 55.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis CAREER award supports theoretical research and education in the rapidly developing field of materials physics known as quantum materials. Quantum materials have properties and exhibit phenomena deeply rooted in the laws of quantum physics, thus providing a key resource for future quantum-based technologies. This project specifically focuses on a particularly prominent example of such materials, the topological materials. The remarkably robust electronic properties of topological materials can be understood with the help of abstract mathematical concepts derived from the study of geometry and shape. When the electrons in these materials are strongly interacting, surprising and exotic phenomena can occur. Understanding these phenomena and the fundamental principles that govern them is a key step towards new energy and computing technologies. The goal of this project is to advance a new paradigm for describing and understanding such strongly interacting materials, and thereby to provide a new perspective for materials discovery.The research activities will build on recent work of the PI, which introduced a formalism for describing systems of interacting electrons that fall outside the currently predominant paradigm for understanding strong interactions. This formalism opens the door to new insight into fundamental properties and behavior of matter, in particular the properties of exotic quantum states, and serves to identify materials in which these are realized. This project will systematically develop and extend the proposed formalism, focusing on systems and materials in two and three dimensions with different structure, chemistry, and symmetry properties. Conceptual advances will be leveraged to provide new pathways to materials prediction and discovery, with the aim of enabling experimental progress on the frontier of correlated topological quantum states.Quantum materials appear to be at the epicenter of next-generation technological innovation, while at the same time offering unique insight into the fundamental building blocks of matter. This award also supports activities in the areas of education and outreach designed to increase the visibility of quantum materials research and to broaden participation in condensed matter physics. These activities contribute to the workforce in quantum materials and technologies. Supported initiatives include: (i) building a professional development certificate program in quantum technology open to non-physicists, (ii), launching an in-house quantum materials summer school as incubator for collaboration (iii), offering diverse and inclusive pre-graduate research opportunities and (iv) expanding the reach and visibility of condensed matter physics through an outreach program for undergraduates.TECHNICAL SUMMARYThis CAREER award supports theoretical research and education in the rapidly developing field of quantum materials, with a specific focus on strongly correlated topological quantum materials. Topological materials are a new class of quantum materials which have exposed a deep connection between abstract mathematical concepts, for example the topology of wave functions, and physical material properties, for example the presence of intrinsically robust transport channels. Our understanding of topological materials relies on one of the central pillars of the modern band theory of solids: the notion of a band inversion. Given its remarkable success in advancing our knowledge of metals and insulators, the goal of this project is to develop a generalization of the band inversion paradigm to strongly interacting topological quantum states. This many-body band inversion paradigm offers a wave function-based approach to studying the structure, properties, and function of strongly correlated topological quantum phases in quantum materials. It overcomes limitations inherent in the flat-band paradigm inspired by the quantum Hall effect and offers a new materials perspective for identifying materials which may realize exotic correlated quantum states.The research activities are organized in three interrelated and complementary research thrusts. The first thrust will focus on systems in two dimensions. Computational methods will be employed to map out the phase diagram in model systems for real materials near a correlated band inversion transition. In addition, existing experimental work on correlated topological semimetals will be examined. The second thrust is concerned with systems in three dimension, in particular band-inverted topological semimetals with higher angular momentum and presents a pathway to generalizing the many-body band inversion to three dimensions. The third thrust is informed by the insight of the first two thrusts and suggests a materials platform for realizing strongly correlated topological ground states at a band inversion transition. These thrusts advance the common goal of uncovering new correlated topological phases outside of the current paradigm.This award also supports activities in the areas of education and outreach. These activities are tightly integrated with the proposed research and harness the ascendance of quantum materials as a key resource for future technology. Supported initiatives include: (i) building a professional development certificate program in quantum technology open to non-physicists, (ii), launching an in-house quantum materials summer school as incubator for collaboration (iii), offering diverse and inclusive pre-graduate research opportunities and (iv) expanding the reach and visibility of condensed matter physics through an outreach program for undergraduates.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该职业奖支持快速发展的材料物理领域(称为量子材料)的理论研究和教育。量子材料的特性和表现出的现象深深植根于量子物理定律,从而为未来的量子技术提供了关键资源。该项目特别关注此类材料的一个特别突出的例子,即拓扑材料。借助从几何和形状研究中得出的抽象数学概念,可以理解拓扑材料极其强大的电子特性。当这些材料中的电子强烈相互作用时,就会发生令人惊讶和奇异的现象。了解这些现象以及支配它们的基本原理是迈向新能源和计算技术的关键一步。该项目的目标是提出一种描述和理解这种强相互作用材料的新范式,从而为材料发现提供新的视角。该研究活动将建立在 PI 最近的工作基础上,该工作引入了描述系统的形式主义相互作用的电子不属于当前理解强相互作用的主流范式。这种形式主义为了解物质的基本属性和行为,特别是奇异量子态的属性打开了大门,并有助于识别实现这些属性和行为的材料。该项目将系统地发展和扩展所提出的形式主义,重点关注具有不同结构、化学和对称特性的二维和三维系统和材料。概念的进步将被用来为材料预测和发现提供新的途径,旨在推动相关拓扑量子态前沿的实验进展。量子材料似乎处于下一代技术创新的中心,同时时间提供对物质基本组成部分的独特见解。该奖项还支持教育和推广领域的活动,旨在提高量子材料研究的知名度并扩大凝聚态物理的参与。这些活动为量子材料和技术领域的劳动力做出了贡献。支持的举措包括:(i) 建立一个向非物理学家开放的量子技术专业发展证书计划,(ii) 启动内部量子材料暑期学校作为合作孵化器 (iii) 提供多样化和包容性的研究生预科课程研究机会,以及(iv)通过本科生推广计划扩大凝聚态物理的影响力和知名度。技术摘要该职业奖支持快速发展的量子材料领域的理论研究和教育,特别关注强相关拓扑量子材料。拓扑材料是一类新型量子材料,它揭示了抽象数学概念(例如波函数的拓扑)与物理材料特性(例如本质上稳健的传输通道的存在)之间的深层联系。我们对拓扑材料的理解依赖于现代固体能带理论的核心支柱之一:能带反转的概念。鉴于其在增进我们对金属和绝缘体的了解方面取得的巨大成功,该项目的目标是开发能带反转范式对强相互作用拓扑量子态的推广。这种多体能带反转范式提供了一种基于波函数的方法来研究量子材料中强相关拓扑量子相的结构、性质和功能。它克服了受量子霍尔效应启发的平带范式固有的局限性,并为识别可能实现奇异相关量子态的材料提供了新的材料视角。研究活动分为三个相互关联和互补的研究重点。第一个重点将集中在二维系统上。将采用计算方法来绘制模型系统中相关能带反转跃迁附近真实材料的相图。此外,还将检查相关拓扑半金属的现有实验工作。第二个推力涉及三维系统,特别是具有较高角动量的能带反转拓扑半金属,并提出了将多体能带反转推广到三维的途径。第三个推力是在前两个推力的基础上提出的,并提出了一个在能带反转跃迁时实现强相关拓扑基态的材料平台。这些推动力推进了在当前范式之外发现新的相关拓扑相的共同目标。该奖项还支持教育和推广领域的活动。这些活动与拟议的研究紧密结合,并利用量子材料的优势作为未来技术的关键资源。支持的举措包括:(i) 建立一个向非物理学家开放的量子技术专业发展证书计划,(ii) 启动内部量子材料暑期学校作为合作孵化器 (iii) 提供多样化和包容性的研究生预科课程研究机会;(iv) 通过本科生推广计划扩大凝聚态物理的影响力和知名度。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jorn Venderbos其他文献
Jorn Venderbos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
果蝇幼虫前进运动发起的神经机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
机器人鸟“前进”运动控制神经信息传导通路及反馈研究
- 批准号:61903230
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
内蒙古中东部毛登-前进场早石炭世强过铝花岗岩带地球化学成因及其构造意义
- 批准号:41702054
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
搅拌摩擦焊接过程前进阻力周期脉动振荡行为及调控研究
- 批准号:51675248
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
高前进比大反流区对旋翼操纵响应的作用机理及影响规律研究
- 批准号:51505216
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advancing Child and Youth-led Climate Change Education with Country
与国家一起推进儿童和青少年主导的气候变化教育
- 批准号:
DP240100968 - 财政年份:2024
- 资助金额:
$ 55.13万 - 项目类别:
Discovery Projects
AQUAWAVE: Advancing Quality and Understanding of Wave Conditions in new Aquaculture Environments
AQUAWAVE:提高新水产养殖环境中波浪条件的质量和理解
- 批准号:
NE/Y005198/1 - 财政年份:2024
- 资助金额:
$ 55.13万 - 项目类别:
Research Grant
CAREER: From Flamelet to Full-Scale: Advancing Plasma-Assisted Combustion for Low-Emission Sustainable Fuels
职业生涯:从小火焰到全面:推进低排放可持续燃料的等离子体辅助燃烧
- 批准号:
2339518 - 财政年份:2024
- 资助金额:
$ 55.13万 - 项目类别:
Continuing Grant
CAREER: Advancing Laser Powder Bed Fusion with Non-Spherical Powder
职业:推进激光粉末床与非球形粉末的融合
- 批准号:
2339857 - 财政年份:2024
- 资助金额:
$ 55.13万 - 项目类别:
Standard Grant
CAREER: Heterogeneity-Enriched Communication for Advancing HPC Systems and Applications
职业:丰富异构性的通信以推进 HPC 系统和应用程序
- 批准号:
2340982 - 财政年份:2024
- 资助金额:
$ 55.13万 - 项目类别:
Standard Grant