CAREER: Acceleration Methods, Iterative Solvers and Heterogeneous Architectures: The New Landscape of Large-Scale Scientific Simulations

职业:加速方法、迭代求解器和异构架构:大规模科学模拟的新景观

基本信息

项目摘要

The rapidly changing landscape of traditional high-performance computing and the emerging technology of edge computing, used in smart grids, unmanned autonomous vehicles, and wearable healthcare devices, bring new challenges to modern scientific simulations. This project aims to enable new algorithmic and software advancements, particularly in the field of numerical linear algebra, to fully utilize these new heterogeneous architectures. The primary goal of this project is to provide computational building blocks for scalable implementation of numerical linear algebra, which is an essential and often indispensable component of simulation software. Methods developed as a part of this project will help computational physicists and chemists to efficiently identify and study promising novel materials and enable high fidelity numerical simulations to address the challenges at the frontiers of science and engineering. The research program is integrated with education and outreach activities that aim to build the future science and engineering workforce and stimulate public engagement with mathematics. The project provides undergraduate and graduate students with advanced training in critical science and technology skills as well as opportunities for interdisciplinary research on applications of global importance. The investigator also aims to increase local engagement and participation through STEM-promoting public events, provide K-12 students with hands-on computational mathematics education, as well as include members of underrepresented groups and enable their professional success.The overarching goal of this research is to further the understanding of a broad class of extrapolation and nonlinear convergence acceleration techniques and explore their ability to enhance and extend existing solvers to fully utilize distributed and heterogeneous computing environments. Convergence acceleration methods have been successfully used in science and engineering for decades, but their rigorous mathematical underpinnings are still not fully understood. Moreover, iterative methods for computations in eigenvalue problems and general nonlinear systems are one of the most important research areas in computational mathematics. The project has the following research objectives: (1) provide a systematic mathematical study of nonlinear acceleration techniques; (2) develop accelerated, possibly asynchronous, iterative algorithms to solve linear systems with potential similar to the well-established Krylov subspace methods; (3) enable efficient and reliable eigenvalue computations by developing accelerated (block) iterative (non)linear eigenvalue/eigenvector solvers; (4) develop and validate new numerical linear algebra tools to support algorithmic developments in computational physics and chemistry. All the methods under development are intended for application to a wide range of complex science and engineering simulations in exascale and distributed computing environments.This project is jointly funded by Computational Mathematics and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传统高性能计算的快速变化以及应用于智能电网、无人驾驶汽车和可穿戴医疗设备的新兴边缘计算技术给现代科学模拟带来了新的挑战。该项目旨在实现新的算法和软件进步,特别是在数值线性代数领域,以充分利用这些新的异构架构。该项目的主要目标是为数值线性代数的可扩展实现提供计算构建块,数值线性代数是仿真软件的基本且通常不可或缺的组件。作为该项目的一部分开发的方法将帮助计算物理学家和化学家有效地识别和研究有前途的新型材料,并实现高保真度数值模​​拟,以应对科学和工程前沿的挑战。该研究计划与教育和外展活动相结合,旨在培养未来的科学和工程劳动力并刺激公众对数学的参与。该项目为本科生和研究生提供关键科学技术技能的高级培训,以及对具有全球重要性的应用进行跨学科研究的机会。研究人员还旨在通过促进 STEM 的公共活动来提高当地的参与度和参与度,为 K-12 学生提供实践计算数学教育,并吸纳代表性不足群体的成员并帮助他们取得职业成功。 这项研究的总体目标旨在进一步了解广泛的外推和非线性收敛加速技术,并探索它们增强和扩展现有求解器以充分利用分布式和异构计算环境的能力。收敛加速方法已在科学和工程中成功使用了数十年,但其严格的数学基础仍未被完全理解。此外,特征值问题和一般非线性系统的迭代计算方法是计算数学中最重要的研究领域之一。该项目有以下研究目标:(1)提供非线性加速技术的系统数学研究; (2) 开发加速的、可能异步的迭代算法来求解线性系统,其潜力类似于成熟的 Krylov 子空间方法; (3) 通过开发加速(块)迭代(非线性)线性特征值/特征向量求解器,实现高效可靠的特征值计算; (4) 开发和验证新的数值线性代数工具,以支持计算物理和化学的算法开发。所有正在开发的方法都旨在应用于百亿亿次和分布式计算环境中的各种复杂科学和工程模拟。该项目由计算数学和刺激竞争性研究既定计划(EPSCoR)共同资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Agnieszka Miedlar其他文献

Resilient s-ACD for Asynchronous Collaborative Solutions of Systems of Linear Equations
用于线性方程组异步协作求解的弹性 s-ACD

Agnieszka Miedlar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Agnieszka Miedlar', 18)}}的其他基金

CAREER: Acceleration Methods, Iterative Solvers and Heterogeneous Architectures: The New Landscape of Large-Scale Scientific Simulations
职业:加速方法、迭代求解器和异构架构:大规模科学模拟的新景观
  • 批准号:
    2324958
  • 财政年份:
    2023
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Continuing Grant
AF: Small: Collaborative Research: Effective Numerical Algorithms and Software for Nonlinear Eigenvalue Problems
AF:小型:协作研究:非线性特征值问题的有效数值算法和软件
  • 批准号:
    1812927
  • 财政年份:
    2018
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant

相似国自然基金

面向电力储能集群系统的加速退化试验与寿命评估方法研究
  • 批准号:
    62303293
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合边缘智能的电力无人机巡检异构系统在线协同加速方法研究
  • 批准号:
    52377103
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于再加速主动轨迹引导机理的玉米播种机高频精准投种方法
  • 批准号:
    32301705
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
卫星重力测量中加速度计数据的扰动机理和抑制方法研究
  • 批准号:
    42374101
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
数据驱动的降维优化流场加速收敛方法研究
  • 批准号:
    12372290
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
  • 批准号:
    10725500
  • 财政年份:
    2023
  • 资助金额:
    $ 43.06万
  • 项目类别:
Computational and neurodevelopmental mechanisms of memory-guided decision-making
记忆引导决策的计算和神经发育机制
  • 批准号:
    10723314
  • 财政年份:
    2023
  • 资助金额:
    $ 43.06万
  • 项目类别:
High-dimensional single-cell mapping to define immune signatures of cytomegalovirus-associated rejection in cardiac transplantation
高维单细胞图谱定义心脏移植中巨细胞病毒相关排斥反应的免疫特征
  • 批准号:
    10816183
  • 财政年份:
    2023
  • 资助金额:
    $ 43.06万
  • 项目类别:
Evaluating the impacts of sea level rise on migration and wellbeing in coastal communities
评估海平面上升对沿海社区移民和福祉的影响
  • 批准号:
    10723570
  • 财政年份:
    2023
  • 资助金额:
    $ 43.06万
  • 项目类别:
Supporting Mental Health in Underserved Youth: Engagement with Digital Mental Health Technologies in Pediatric Primary Care
支持服务不足的青少年的心理健康:在儿科初级保健中使用数字心理健康技术
  • 批准号:
    10688083
  • 财政年份:
    2023
  • 资助金额:
    $ 43.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了