CIF: III: Medium: MoDL+: Analytical Foundations for Deep Learning and Inference over Graphs
CIF:III:媒介:MoDL:深度学习和图推理的分析基础
基本信息
- 批准号:2212318
- 负责人:
- 金额:$ 119.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep learning, based on deep neural networks (DNNs), has demonstrated superior power in solving many difficult real-world problems, such as image classification, strategy-game playing, speech recognition, and medical image analysis, and is poised to revolutionize science and engineering, bringing broad benefits to society at large. Building on the success of DNNs, recent years have seen a flurry of research activities focused on developing graph neural networks (GNNs) in order to tackle important problems on graph-structured data. This award will address fundamental theoretical problems with deep GNNs, shedding light on their power and limitations and leading to new well-grounded GNN architectures. Guided by theory, the team of researchers will develop deep graph-learning algorithms for solving practical problems in 5G/NextG networks and power grids. The insights gained from this research will benefit diverse research domains, and aid in managing and securing physical and digital infrastructure. The award will also support undergraduate students, graduate students, and postdoctoral researchers from underrepresented minority groups in research and educational activities as well as organization of K-12 outreach programs.This award will advance a theory-guided and application-driven paradigm for tackling challenging fundamental research questions in deep graph learning, with a particular emphasis on applications to 5G/NextG wireless networks and power (micro)grid systems. The award will make connections between the theory of partial differential equations (PDEs) and deep graph-guided learning by establishing continuum limits for deep graph neural networks, utilizing PDE-guided deep graph neural networks, and using a novel Morse theory approach to understand the generalization power of GNNs. It will also advance innovative sensitivity-regularized deep-learning approaches, and provide an in-depth empirical study of the representation power of GNNs compared to standard DNNs, demystifying the role of graphs in deep learning. The project will help lay the needed theoretical foundation to guide the design of theory-guided deep graph learning algorithms to solve practical problems in 5G/NextG networks and power grids in a principled manner.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于深度神经网络 (DNN) 的深度学习在解决许多现实世界中的难题方面表现出了卓越的能力,例如图像分类、策略游戏、语音识别和医学图像分析,并有望彻底改变科学和技术。工程,为整个社会带来广泛的利益。在 DNN 成功的基础上,近年来出现了一系列研究活动,重点是开发图神经网络 (GNN),以解决图结构数据的重要问题。该奖项将解决深度 GNN 的基本理论问题,揭示其力量和局限性,并产生新的基础良好的 GNN 架构。在理论指导下,研究团队将开发深度图学习算法来解决 5G/NextG 网络和电网中的实际问题。从这项研究中获得的见解将有利于不同的研究领域,并有助于管理和保护物理和数字基础设施。该奖项还将支持来自代表性不足的少数群体的本科生、研究生和博士后研究人员参与研究和教育活动以及组织 K-12 外展项目。该奖项将推进理论指导和应用驱动的范式,以应对具有挑战性的问题深度图学习的基础研究问题,特别强调 5G/NextG 无线网络和电力(微)电网系统的应用。该奖项将通过建立深度图神经网络的连续统极限、利用偏微分方程 (PDE) 引导的深度图神经网络以及使用新颖的莫尔斯理论方法来理解GNN 的泛化能力。它还将推进创新的灵敏度正则化深度学习方法,并对 GNN 与标准 DNN 的表示能力进行深入的实证研究,揭开图在深度学习中的作用的神秘面纱。该项目将有助于奠定所需的理论基础,指导理论指导的深度图学习算法的设计,以原则性地解决 5G/NextG 网络和电网中的实际问题。该奖项反映了 NSF 的法定使命,被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time-Domain Generalization of Kron Reduction
Kron 约简的时域推广
- DOI:10.1109/lcsys.2022.3185939
- 发表时间:2023
- 期刊:
- 影响因子:3
- 作者:Singh, Manish K.;Dhople, Sairaj;Dorfler, Florian;Giannakis, Georgios B.
- 通讯作者:Giannakis, Georgios B.
Learning while Respecting Privacy and Robustness to Adversarial Distributed Datasets
- DOI:10.23919/eusipco55093.2022.9909977
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:A. Sadeghi;G. Giannakis
- 通讯作者:A. Sadeghi;G. Giannakis
Surrogate Modeling for Bayesian Optimization Beyond a Single Gaussian Process
- DOI:10.1109/tpami.2023.3264741
- 发表时间:2022-05
- 期刊:
- 影响因子:23.6
- 作者:Qin Lu;Konstantinos D. Polyzos;Bingcong Li;G. Giannakis
- 通讯作者:Qin Lu;Konstantinos D. Polyzos;Bingcong Li;G. Giannakis
Utilizing contrastive learning for graph-based active learning of SAR data
- DOI:10.1117/12.2663099
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Jason S. Brown;Riley O'Neill;J. Calder;A. Bertozzi
- 通讯作者:Jason S. Brown;Riley O'Neill;J. Calder;A. Bertozzi
Scalable Bayesian Meta-Learning through Generalized Implicit Gradients
- DOI:10.1609/aaai.v37i9.26337
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Yilang Zhang;Bingcong Li;Shi-Ji Gao;G. Giannakis
- 通讯作者:Yilang Zhang;Bingcong Li;Shi-Ji Gao;G. Giannakis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Calder其他文献
Jeffrey Calder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Calder', 18)}}的其他基金
CAREER: Harnessing the Continuum for Big Data: Partial Differential Equations, Calculus of Variations, and Machine Learning
职业:利用大数据的连续体:偏微分方程、变分法和机器学习
- 批准号:
1944925 - 财政年份:2020
- 资助金额:
$ 119.98万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations, Monotone Numerical Schemes, and Scaling Limits for Semi-Supervised Learning on Graphs
图半监督学习的非线性偏微分方程、单调数值方案和标度极限
- 批准号:
1713691 - 财政年份:2017
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
Nonlinear partial differential equations and continuum limits for large discrete sorting problems
大型离散排序问题的非线性偏微分方程和连续极限
- 批准号:
1656030 - 财政年份:2016
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
Nonlinear partial differential equations and continuum limits for large discrete sorting problems
大型离散排序问题的非线性偏微分方程和连续极限
- 批准号:
1500829 - 财政年份:2015
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
相似国自然基金
USP46通过去泛素化修饰RAP80促进同源重组修复的分子机制及其在三阴乳腺癌中的功能研究
- 批准号:82373150
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于国人脊柱矢状位序列新分型的腰椎-躯干三维运动研究
- 批准号:82302739
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三维有序大/介孔稀土氧化物(La2O3和CeO2)负载Ru催化剂用于氨分解性能研究
- 批准号:52361040
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
人机物三元融合环境下的人机合作关键问题研究
- 批准号:62376117
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 119.98万 - 项目类别:
Continuing Grant