Geometric Flows and Applications

几何流及其应用

基本信息

  • 批准号:
    2141529
  • 负责人:
  • 金额:
    $ 17.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Geometric flows have many real-world applications including material sciences, biology and image processing. Mathematically they are parabolic partial differential equations that deform geometric objects to their optimal shapes. In addition to their importance in geometric analysis, they also have potential applications to other mathematical disciplines, such as mathematical physics and low-dimensional topology. This award supports the investigation of two fundamental examples of geometric flows, mean curvature flow and Ricci flow. The PI will develop new ideas and robust techniques that will benefit the study of other geometric partial differential equations and related applications. In addition, the PI will place a strong emphasis on education in differential geometry and related topics through teaching, supervising undergraduate, graduate students and young scholars, and organizing seminars and conferences. The PI will also play an important role in the promotion of women and other underrepresented groups in STEM to enhance diversity and equity in the society.The first part of the project is on the properties of closed hypersurfaces with low entropy. It involves an exploration of global features of the moduli space of asymptotically conical self-expanders of mean curvature flow. An overarching goal is to verify the smooth four-dimensional Schoenflies conjecture for hypersurfaces with low entropy. The second part concerns the variational construction of new examples of asymptotically conical self-expanders. The third part probes the asymptotic structure of soliton solutions to mean curvature flow as well as Ricci flow. The PI aims to show the geometry of these soliton solutions under mild topological restrictions is bounded in various senses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何流有许多现实世界的应用,包括材料科学、生物学和图像处理。从数学上讲,它们是抛物线偏微分方程,可将几何对象变形为其最佳形状。除了在几何分析中的重要性之外,它们还具有在其他数学学科中的潜在应用,例如数学物理和低维拓扑。该奖项支持对几何流的两个基本示例的研究,即平均曲率流和里奇流。 PI 将开发新的想法和强大的技术,这将有利于其他几何偏微分方程和相关应用的研究。此外,PI将通过教学、指导本科生、研究生和年轻学者以及组织研讨会和会议,重点关注微分几何及相关主题的教育。 PI 还将在促进女性和其他代表性不足的群体参与 STEM 方面发挥重要作用,以增强社会的多样性和公平性。该项目的第一部分是研究低熵封闭超曲面的性质。它涉及对平均曲率流渐近圆锥自扩张器模空间的全局特征的探索。首要目标是验证低熵超曲面的平滑四维 Schoenflies 猜想。第二部分涉及渐近圆锥自扩张器新例子的变分构造。第三部分探讨了平均曲率流和Ricci流的孤子解的渐近结构。该 PI 旨在展示这些孤子解在轻度拓扑限制下的几何形状在各种意义上都是有界的。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lu Wang其他文献

Experimental Study on Sweep Characteristics of Gas Gravity Drainage in the Interlayer Oil Reservoir
层间油藏天然气重力排水波及特性试验研究
  • DOI:
    10.3389/fenrg.2021.760315
  • 发表时间:
    2021-11-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hong;Lu Wang;Daiyu Zhou;Fuyong Wang;Shi Li;Jun Li;Xinglong Chen;An;Haishui Han
  • 通讯作者:
    Haishui Han
Programed self-assembly of microstructures: self-sorting based on size-matched disk-like molecules and remarkable cooperative reinforcement of hydrogen-bonding and donor–acceptor interaction
微结构的程序化自组装:基于尺寸匹配的盘状分子的自排序以及氢键和供体-受体相互作用的显着协同增强
  • DOI:
    10.1016/j.tetlet.2011.05.082
  • 发表时间:
    2011-07-20
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Zeyun Xiao;Lu Wang;Xin Zhao;Xi;Zhanting Li
  • 通讯作者:
    Zhanting Li
Acute Genotoxic Stress-Induced Senescence in Human Mesenchymal Cells Drives a Unique Composition of Senescence Messaging Secretome (SMS)
人类间充质细胞中急性基因毒性应激诱导的衰老驱动衰老信息分泌组 (SMS) 的独特组成
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Gaur;Lu Wang;Alex;ra Amaro;M. Dobke;I. Jordan;V. Lunyak
  • 通讯作者:
    V. Lunyak
Reply to: The role of recruitment versus training in influenza-induced lasting changes to alveolar macrophage function
回复:招募与训练在流感引起的肺泡巨噬细胞功能持久变化中的作用
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    30.5
  • 作者:
    Tao Wang;Jinjing Zhang;Lu Wang;Yanling Wang;Ying Li;Yushi Yao
  • 通讯作者:
    Yushi Yao
Genomics-informed insights into microbial degradation of N,N-dimethylformamide
基于基因组学的 N,N-二甲基甲酰胺微生物降解见解
  • DOI:
    10.1101/2021.03.18.435917
  • 发表时间:
    2021-03-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junhui Li;P. Dijkstra;Qihong Lu;Shanquan Wang;Shaohua Chen;Deqiang Li;Zhiheng Wang;Zhenglei Jia;Lu Wang;H. Shim
  • 通讯作者:
    H. Shim

Lu Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lu Wang', 18)}}的其他基金

Conference: Doctoral Consortium at Student Research Workshop at the Annual Meeting of the Association for Computational Linguistics
会议:计算语言学协会年会学生研究研讨会上的博士联盟
  • 批准号:
    2307288
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Argument Graph Supported Multi-Level Approach for Argumentative Writing Assistance
论证图支持多层次的议论文写作辅助方法
  • 批准号:
    2302564
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
CRII:SCH: Interactive Explainable Deep Survival Analysis
CRII:SC​​H:交互式可解释深度生存分析
  • 批准号:
    2245739
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Entity- and Event-driven Media Bias Detection
协作研究:III:小型:实体和事件驱动的媒体偏差检测
  • 批准号:
    2127747
  • 财政年份:
    2021
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
  • 批准号:
    2105576
  • 财政年份:
    2021
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Continuing Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
  • 批准号:
    2146997
  • 财政年份:
    2021
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Continuing Grant
Collaborative Research: From User Reviews to User-Centered Generative Design: Automated Methods for Augmented Designer Performance
协作研究:从用户评论到以用户为中心的生成设计:增强设计师性能的自动化方法
  • 批准号:
    2050130
  • 财政年份:
    2021
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
CAREER: Long Document Summarization with Question-Summary Hierarchy and User Preference Control
职业:具有问题摘要层次结构和用户偏好控制的长文档摘要
  • 批准号:
    2046016
  • 财政年份:
    2021
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Continuing Grant
Evaluation of Hypothermic Oxygenated Perfusion Ex-Vivo Heart Perfusion to Expand the Donor Pool and Improve Transplant Outcomes
评估低温氧合灌注离体心脏灌注以扩大供体库并改善移植结果
  • 批准号:
    MR/V002074/1
  • 财政年份:
    2020
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Fellowship
RI: Small: Collaborative Research: Computational Methods for Argument Mining: Extraction, Aggregation, and Generation
RI:小型:协作研究:参数挖掘的计算方法:提取、聚合和生成
  • 批准号:
    2100885
  • 财政年份:
    2020
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant

相似国自然基金

面向小样本场景的新型网络入侵流量检测方法研究
  • 批准号:
    62302197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向大口径管道流量高精度测量的光纤多参数传感及解耦技术研究
  • 批准号:
    62375045
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
适用于液相色谱的皮升流量计量
  • 批准号:
    22304186
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向数据中心动态混合流量的网络传输优化关键技术研究
  • 批准号:
    62302472
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
m6A甲基化修饰介导lncRNA SNHG12调控深低温低流量术后脑缺血再灌注损伤的作用机制研究
  • 批准号:
    82370306
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Geometric flows and applications
会议:几何流及应用
  • 批准号:
    2316597
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Geometric Flows and Applications
几何流及其应用
  • 批准号:
    2018220
  • 财政年份:
    2019
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Continuing Grant
Geometric Flows and Applications
几何流及其应用
  • 批准号:
    1811144
  • 财政年份:
    2018
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Continuing Grant
Applications of geometric analysis to general relativity and geometric flows
几何分析在广义相对论和几何流中的应用
  • 批准号:
    1405152
  • 财政年份:
    2014
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Regulary and stability of curvature flows and their applications to geometric variational problems
曲率流的规律性和稳定性及其在几何变分问题中的应用
  • 批准号:
    62175069
  • 财政年份:
    2007
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Independent Junior Research Groups
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了