Collaborative Research: Integrative Adaptation of Dendrimer-peptide Conjugates for Cancer Immunotherapy
合作研究:树状聚合物-肽缀合物对癌症免疫治疗的综合适应
基本信息
- 批准号:2212123
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical SummaryImmunotherapy, utilization of a patient’s own immune system to treat diseases, has revolutionized cancer treatment. Most of the immunotherapeutic drugs that are being used in the clinic are based on biologics, such as antibodies (proteins that bind to specific antigens only), that boost immune surveillance against tumor cells. However, such antibody-based drugs are expensive and often result in disappointing clinical outcomes, particularly when used alone. The use of peptides (macromolecules made from a chain of 20-30 amino acids) would be a promising alternative; however, their weaker binding than the corresponding antibodies has been recognized as a major weakness. Recently, the collaborative team proposing this work have demonstrated that small ball-shaped polymers (size of 1/10,000 of human hair thickness), called poly(amidoamine) (PAMAM) dendrimers, can be engineered to dramatically improve the binding strength of the peptides up to a million times. In this proposal, the team hypothesizes that dendrimers attached with computationally optimized peptides can boost up the immune system to attack tumor cells, thereby maximizing their immunotherapeutic effect. Upon successful completion of this project, the team will contribute to developing a new technology that would be compatible with various immunotherapeutic peptides. Integrated with the research effort, this project includes various educational activities that recruit graduate students, undergraduate students, and high school students. These activities will not only help advanced degree students be actively involved in cutting-edge science but also stimulate STEM interests of pre-college students, which will have profound impact on our nation to maintain the position as the world leader of science and engineering.Technical SummaryThe overarching goal of the research activities is to integrate computational and experimental methods to engineer a nanoparticle platform based on dendrimer-peptide conjugates for enhanced cancer immunotherapy. The collaborative team has demonstrated that poly(amidoamine) (PAMAM) dendrimers are excellent mediators for multivalent binding effects, as observed by dramatically enhanced binding avidities of small molecules, antibodies, and peptides. This nanoengineering approach for binding enhancement could be directly applicable for improving cancer immunotherapy that relies on efficient blocking of binding between immune and tumor cells. Given that strong binding to the target immune checkpoint proteins, such as programmed death-ligand 1 (PD-L1), programmed cell death protein-1 (PD-1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), is necessary to effectively induce the checkpoint blockade, all the FDA-approved immune checkpoint inhibitors (ICIs) to date are based on antibodies with strong binding affinities. Unfortunately, such antibody-based therapeutics are expensive and often result in disappointing clinical outcomes, particularly when used alone. The team hypothesizes that dendrimer conjugation with computationally optimized peptides that target multiple immune checkpoint receptors on T cells would substantially improve the binding strength of otherwise weakly binding peptides, which in turn would maximize their immunotherapeutic efficiency. The use of peptides would be advantageous, as they are cost-effective and amenable to various engineering strategies, in contrast to whole antibodies. The proposed dendrimer-peptide conjugate (DPC) systems, consisting of engineered PAMAM dendrimers functionalized with peptides, are relatively simple in comparison to other commonly used nanoparticle drug delivery systems. Yet, the DPC systems are unique and innovative in that: i) peptides can be adapted and optimized via a high-throughput computation; ii) dendrimers multimerize peptides to exploit strong multivalent binding effects (avidity); iii) folded peptides can be stabilized on the dendrimer surface, further contributing for binding enhancement; and iv) this approach is compatible with virtually any peptides, providing a modular platform for various combinations. Upon successful completion of this project, we will have obtained fundamental understanding in peptide design/synthesis, polymer engineering, and binding kinetics and biological behaviors of the DPCs. The project will broaden participation of underrepresented minorities and women in STEM research at various educational levels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要免疫疗法,利用患者自身的免疫系统来治疗疾病,已经彻底改变了癌症治疗,临床上使用的大多数免疫治疗药物都是基于生物制剂,例如抗体(仅与特定抗原结合的蛋白质)。然而,这种基于抗体的药物价格昂贵,并且常常导致令人失望的临床结果,特别是在单独使用肽(由一系列肽组成的大分子时)。 20-30 个氨基酸)将是一个有前途的替代方案;然而,它们的结合力比相应的抗体弱已被认为是一个主要弱点,最近,提出这项工作的合作团队已经证明,小球形聚合物(大小为 1/ 10,000 根人类头发粗细的聚酰胺胺 (PAMAM) 树状聚合物经过改造后,可以将肽的结合强度显着提高一百万倍。附有经过计算优化的肽的树状聚合物可以增强免疫系统攻击肿瘤细胞,从而最大限度地发挥其免疫治疗效果。该项目成功完成后,该团队将有助于开发一种与各种免疫治疗肽相兼容的新技术。该项目包括招收研究生、本科生和高中生的各种教育活动,这些活动不仅可以帮助高级学位学生积极参与前沿科学,还可以激发学生对STEM的兴趣。预科学生,这将对我们国家保持世界科学和工程领导者的地位产生深远的影响。技术摘要研究活动的总体目标是整合计算和实验方法来设计基于树枝状聚合物的纳米颗粒平台用于增强癌症免疫治疗的肽缀合物已经证明,聚(酰胺基胺)(PAMAM)树状聚合物是多价结合效应的优秀介质,通过显着增强的小分子、抗体、这种结合增强的纳米工程方法可以直接应用于改善依赖于有效阻断免疫细胞和肿瘤细胞之间结合的癌症免疫疗法,因为它与目标免疫检查点蛋白(例如程序性死亡配体1(PD))有很强的结合力。 -L1)、程序性细胞死亡蛋白-1 (PD-1) 和细胞毒性 T 淋巴细胞相关蛋白 4 (CTLA-4) 是有效诱导检查点封锁所必需的,所有 FDA 批准的免疫检查点抑制剂迄今为止,这种基于抗体的疗法是基于具有强结合亲和力的抗体,并且常常导致令人失望的临床结果,特别是当单独使用时,该团队冒险将树状聚合物与针对多种免疫的计算优化的肽结合。 T细胞上的检查点受体将大大提高其他弱结合肽的结合强度,这反过来又会最大限度地提高其免疫治疗效率。肽的使用将是有利的,因为它们具有成本效益且有效。与完整抗体相比,所提出的树状聚合物-肽缀合物(DPC)系统由用肽功能化的工程化 PAMAM 树状聚合物组成,与其他常用的纳米颗粒药物递送系统相比相对简单。该系统的独特性和创新性在于:i) 肽可以通过高通量计算进行调整和优化;ii) 树枝状聚合物使肽多聚化,以利用强大的多价结合效应(亲和力);iii)折叠肽可以稳定在树枝状聚合物表面,进一步促进结合增强;iv)这种方法几乎与任何肽兼容,为各种组合提供了模块化平台。将获得对 DPC 的肽设计/合成、聚合物工程以及结合动力学和生物行为的基本了解。该项目将扩大代表性不足的少数族裔和妇女对各种教育领域 STEM 研究的参与。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Petr Kral其他文献
Petr Kral的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Petr Kral', 18)}}的其他基金
Multiscale Modeling of Chiral Self-assemblies of Superparamagnetic Nanoparticles
超顺磁性纳米颗粒手性自组装的多尺度建模
- 批准号:
1506886 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Atomistic Simulations of Nanoparticle Self-assembly: Ionic Solutions, Solvent Interfaces, and Electric Fields
纳米粒子自组装的原子模拟:离子溶液、溶剂界面和电场
- 批准号:
1309765 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Multiscale Modeling of Molecular Transport in Graphene Nanopores and Nanotubes
石墨烯纳米孔和纳米管中分子传输的多尺度建模
- 批准号:
0932812 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
基于光谱选择性吸收/透射的复合聚光太阳能PV/T系统综合性能研究
- 批准号:52306237
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一维次晶化聚离子液基电流变材料的综合性能强化机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探索电子关联驱动新型三维负电子压缩率材料:基于多种载流子浓度调节和光电子能谱测量技术的综合性研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
关于热超级类地行星和亚海王星的形成过程的综合性研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于我国首颗综合性太阳卫星莱曼阿尔法太阳望远镜数据研究日冕物质抛射及其驱动激波
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323083 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
- 批准号:
2335235 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Opening the black box of oxygen deficient zone biogeochemistry through integrative tracers
合作研究:通过综合示踪剂打开缺氧区生物地球化学黑匣子
- 批准号:
2342987 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Opening the black box of oxygen deficient zone biogeochemistry through integrative tracers
合作研究:通过综合示踪剂打开缺氧区生物地球化学黑匣子
- 批准号:
2342986 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Opening the black box of oxygen deficient zone biogeochemistry through integrative tracers
合作研究:通过综合示踪剂打开缺氧区生物地球化学黑匣子
- 批准号:
2342988 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant