CAREER: Transforming Neural Interfaces Using Stretchable, Transparent, Multifunctional Nanomesh Microelectrodes

职业:使用可拉伸、透明、多功能纳米网微电极改变神经接口

基本信息

  • 批准号:
    2140392
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

To understand how the brain functions and cure brain disorders, neuroscientists and clinicians need brain mapping devices. This project will develop the next generation of stretchable and transparent electrode arrays with unprecedented scale and resolution for brain recording and stimulation. This program will not only generate broad impacts in neuroscience through proactive device translation efforts in and beyond this project, but also create unique opportunities for novel neuroprosthetics. Through generating neural interfaces that will allow human-like performance in neuroprosthetic limbs and retinal prostheses with chronic biocompatibility, this program will impact more than 3 million people in the U.S. who live with upper limb loss, paralysis due to tetraplegia, blindness due to retinitis pigmentosa, or epilepsy. The proposed multidisciplinary educational/outreach program will engage hundreds of students through research experiences for underrepresented K-12 students, active undergraduate research involvements, graduate leadership training in device translation, and augmented engineering curricula.The research objective of this project is to investigate a set of foundational materials and device problems to for the first time establish a new unique device technology "multifunctional nanomesh microelectrodes" to shift the current paradigm of neural interface from rigid, opaque neuroelectrode arrays towards ultrasoft and transparent ones. Stretchable and transparent neuroelectrode arrays are two emerging neural interfaces due to their chronic biocompatibility and multimodal compatibility, respectively. However, both systems are currently confounded by their scalability since fundamentally, no existing electrode materials can simultaneously provide the required system-level properties of electrochemical interfaces, electrical conductance, and chronic biocompatibility in addition to the mandatory mechanical stretchability or optical transparency. Based on strong preliminary results, the PI hypothesizes that multifunctional nanomesh microelectrodes can possess an unprecedented combination of all functionalities needed for this aforementioned paradigm shift including low impedance, large stretchability, high transparency, and chronic biocompatibility. This project will holistically test this hypothesis through innovative theoretical design, experimental realization, and system demonstration/validation, and proactively integrate closed-loop device translation and experiential education activities. Vertically, the unprecedented combination of large throughput, chronic biocompatibility and multimodal compatibility of the resulting neural interface device will yield profound impacts to both our studying of complex networks in the central nervous system and interfacing with the brain. Laterally, the multifunctional-nanomesh device concept, theoretical framework, and fabrication knowledge can also be transformative in many other fields such as optoelectronics, energy storage, and nanogenerators if stretchability and/or transparency are desired.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了了解大脑的功能并治疗大脑疾病,神经科学家和临床医生需要大脑绘图设备。 该项目将开发下一代可拉伸和透明的电极阵列,其规模和分辨率前所未有,用于大脑记录和刺激。该计划不仅将通过该项目内外积极的设备翻译工作对神经科学产生广泛影响,而且还将为新型神经修复术创造独特的机会。通过生成神经接口,使神经假肢和视网膜假体具有类似人类的性能,并具有慢性生物相容性,该项目将影响美国超过 300 万人,这些人患有上肢丧失、四肢瘫痪导致的瘫痪、色素性视网膜炎导致的失明,或癫痫。拟议的多学科教育/推广计划将通过对代表性不足的 K-12 学生的研究经验、积极的本科生研究参与、设备翻译方面的研究生领导力培训以及增强工程课程吸引数百名学生。该项目的研究目标是调查一组基础材料和设备问题的研究,首次建立了一种新的独特设备技术“多功能纳米网微电极”,将当前的神经接口范式从刚性、不透明的神经电极阵列转变为超软和透明的神经电极阵列。 可拉伸和透明神经电极阵列分别由于其长期生物相容性和多模式兼容性而成为两种新兴的神经接口。然而,这两种系统目前都因其可扩展性而受到困扰,因为从根本上来说,除了强制性的机械拉伸性或光学透明度之外,现有的电极材料都无法同时提供电化学界面、电导率和长期生物相容性等所需的系统级特性。基于强有力的初步结果,PI假设多功能纳米网微电极可以前所未有地组合上述范式转变所需的所有功能,包括低阻抗、大拉伸性、高透明度和长期生物相容性。该项目将通过创新的理论设计、实验实现和系统演示/验证来全面检验这一假设,并主动整合闭环设备翻译和体验式教育活动。 纵向而言,由此产生的神经接口设备将大通量、长期生物相容性和多模式兼容性前所未有地结合在一起,将对我们对中枢神经系统复杂网络和与大脑接口的研究产生深远的影响。此外,如果需要可拉伸性和/或透明度,多功能纳米网格设备概念、理论框架和制造知识也可以在许多其他领域产生变革,例如光电子学、储能和纳米发电机。该奖项反映了 NSF 的法定使命,并已被通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hybrid electrical and optical neural interfaces
混合电气和光学神经接口
Crosstalk in polymer microelectrode arrays
聚合物微电极阵列中的串扰
  • DOI:
    10.1007/s12274-021-3442-8
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Qiang Y;Gu W;Liu Z;Liang S;Ryu JH;Seo KJ;Liu W;Fang H
  • 通讯作者:
    Fang H
Special Section Guest Editorial: Hybrid Photonic/X Neurointerfaces
特别版块客座社论:混合光子/X 神经接口
  • DOI:
    10.1117/1.nph.9.3.032201
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Fang, Hui;Yu, Xin
  • 通讯作者:
    Yu, Xin
Bilayer-Nanomesh Transparent Neuroelectrodes on 10 μ m -Thick PDMS
双层纳米网格透明神经电极 10 μm 厚 PDMS
Advanced materials for implantable neuroelectronics
用于植入式神经电子学的先进材料
  • DOI:
    10.1557/s43577-023-00540-5
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Qi Y;Kang SK;Fang H
  • 通讯作者:
    Fang H
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hui Fang其他文献

A Cysteinyl-tRNA Synthetase Mutation Causes Novel Autosomal-Dominant Inheritance of a Parkinsonism/Spinocerebellar-Ataxia Complex
半胱氨酰-tRNA合成酶突变导致帕金森病/脊髓小脑共济失调复合体的新型常染色体显性遗传
  • DOI:
    10.2139/ssrn.3806674
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenxin Zhang;Han;Hui Fang;Hong;H. You;Xiaoyan Huang;Chang;Han Wang;B. Hou;Xiu;F. Feng;Huanming Yang;Jian Wang;Rui Wu;Jianguo Zhang;Jiangong Zhou
  • 通讯作者:
    Jiangong Zhou
Quantitative trait locus analysis of Verticillium wilt resistance in an introgressed recombinant inbred population of Upland cotton
陆地棉渐渗重组自交群体抗黄萎病的数量性状位点分析
  • DOI:
    10.1007/s11032-013-9987-9
  • 发表时间:
    2014-03-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Hui Fang;Huiping Zhou;S. Sanogo;A. Lipka;D. Fang;R. Percy;S. Hughs;Don C. Jones;M. Gore;Jinfa Zhang
  • 通讯作者:
    Jinfa Zhang
[Increasing the thermostability of glutamate decarboxylase from Lactobacillus brevis by introducing proline].
[通过引入脯氨酸提高短乳杆菌谷氨酸脱羧酶的热稳定性]。
Service Restoration with Voltage Control for Resilient Distribution Systems Incorporating Soft Open Points
通过电压控制恢复包含软开点的弹性配电系统的服务
Alterations of hHrd1 expression are related to hyperphosphorylated tau in the hippocampus in Alzheimer's disease
hHrd1 表达的改变与阿尔茨海默病海马 tau 蛋白过度磷酸化有关
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    H. Hou;Yu‐xian Shen;Hong Zhu;Hao Sun;Xue;Hui Fang;Jiang
  • 通讯作者:
    Jiang

Hui Fang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hui Fang', 18)}}的其他基金

Collaborative Research: Transfer Printed, Single-Crystalline Si Nanomesh Thin Films
合作研究:转移印刷单晶硅纳米网薄膜
  • 批准号:
    2146636
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Transforming Neural Interfaces Using Stretchable, Transparent, Multifunctional Nanomesh Microelectrodes
职业:使用可拉伸、透明、多功能纳米网微电极改变神经接口
  • 批准号:
    1847215
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: Transfer Printed, Single-Crystalline Si Nanomesh Thin Films
合作研究:转移印刷单晶硅纳米网薄膜
  • 批准号:
    1905575
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
III: Small: Information Chain Support for Disaster Mitigation, Preparedness, Response and Recovery
III:小型:减灾、备灾、响应和恢复的信息链支持
  • 批准号:
    1423002
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

绿色补贴政策激励下养殖户低碳生产转型研究:转换机理、减碳效应与政策优化
  • 批准号:
    72303122
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
智能化转型下煤矿员工适应性障碍的产生机理、风险与干预政策研究
  • 批准号:
    72374128
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
基于靶向性PIC构建的纳米反转型载药微泡增效CRPC化疗的研究
  • 批准号:
    82373306
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
数字化转型下人机融合领导风格对团队绩效的影响机制研究
  • 批准号:
    72372156
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
面向能源结构转型的中国储能布局预测研究
  • 批准号:
    42341204
  • 批准年份:
    2023
  • 资助金额:
    400 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Transforming Implantable Neural Interfaces through Computing: From Circuits to Systems
职业:通过计算改变植入式神经接口:从电路到系统
  • 批准号:
    2317764
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Targeting CNS Neuroinflammation in Traumatic Brain Injury by Nasal Anti-CD3
通过鼻抗 CD3 靶向治疗创伤性脑损伤中的 CNS 神经炎症
  • 批准号:
    10597247
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Mechanisms of pigment cell maturation and subtype specification during zebrafish stripe pattern formation
斑马鱼条纹图案形成过程中色素细胞成熟和亚型规范的机制
  • 批准号:
    10413822
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Extracellular Matrix Biomechanical Properties Contribute to Aneurysm Formation in Marfan Syndrome
细胞外基质生物力学特性有助于马凡综合征动脉瘤的形成
  • 批准号:
    10682376
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Developmental basis for vascular smooth muscle cell dysfunction in Marfan syndrome aortic aneurysm
马凡综合征主动脉瘤血管平滑肌细胞功能障碍的发育基础
  • 批准号:
    10066295
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了