NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
基本信息
- 批准号:2140211
- 负责人:
- 金额:$ 35.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With support from the NSF Division of Chemistry, Hannah Shafaat of Ohio State University and collaborators at the Technical University of Munich and the Max Planck Institute for Chemical Energy Conversion will develop and characterize optimized catalytic systems for production of hydrogen gas from water. The development of catalysts that can efficiently convert electrochemical energy into sustainable fuels such as H2 represents a critical obstacle that must be overcome in order to replace fossil fuels with environmentally friendly alternatives. Nature’s catalysts for hydrogen conversion, enzymes known as hydrogenases, exhibit an unparalleled degree of activity; despite global efforts, no sustainable synthetic catalyst has yet been developed that is comparable in rate and efficiency to the natural hydrogenases. While practical application of the natural systems is limited, decades of study on hydrogenases have provided substantial understanding of the enzyme properties as well as the catalytic mechanism, revealing key features that are necessary for function. These general design principles will be applied to construct a highly efficient catalytic system for electrochemical energy conversion. Through this project, graduate students from all three teams will combine their expertise across areas of biochemistry, inorganic chemistry, spectroscopy, and electrochemistry, building interdisciplinary international collaborations. The insight obtained from these fundamental studies is expected to be broadly applicable to the generation of scalable materials for electrochemical energy storage, including water oxidation, nitrogen fixation, and CO2 reduction, with potential for global socioeconomic impact. Students and postdoctoral scholars conducting the research will experience international exchange, including a workshop involving the entire project team.This approach to catalyst design from the group of Hannah Shafaat at Ohio State University and her German collaborators focuses on the development of a robust, artificial hydrogenase electrocatalyst. Using a model metalloenzyme as a well-defined scaffold, the team will incorporate select molecular complexes as intramolecular electron relays to functionally model the native redox-active cofactors and establish their roles in electrocatalysis. The hybrid enzyme will be anchored onto an electrode surface, designed to act as an electron transfer partner, and system variables that impact interfacial charge transfer will be probed. The specific objectives of the research program are to (i) design and implement strategies for integration of the individual components; (ii) to apply novel in situ spectro-electrochemical studies to interrogate the mechanism of H2 evolution by the hybrid constructs and (iii) to optimize these systems by tuning secondary and outer sphere properties to enhance catalytic efficiencies. By identifying the role that each component plays in catalysis, sluggish steps will be improved upon and unproductive or degradative pathways can be eradicated to systematically improve the catalytic system.This research was funded under the NSF-DFG Lead Agency Activity in Electrosynthesis and Electrocatalysis (NSF-DFG EChem) opportunity NSF 20-578.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在 NSF 化学部的支持下,俄亥俄州立大学的 Hannah Shafaat 以及慕尼黑工业大学和马克斯·普朗克化学能量转换研究所的合作者将开发和表征用于从水中生产氢气的优化催化系统。能够有效地将电化学能量转化为氢气等可持续燃料的催化剂是一个必须克服的关键障碍,以便用环保的替代品(称为氢化酶的酶)取代化石燃料。表现出无与伦比的活性;尽管全球努力,但尚未开发出在速率和效率上可与天然氢化酶相媲美的可持续合成催化剂,尽管天然系统的实际应用有限,但数十年对氢化酶的研究已经提供了深入的了解。通过该项目,三个团队的研究生将应用这些通用设计原理构建高效的电化学能量转换催化系统。结合他们的专业知识跨生物化学、无机化学、光谱学和电化学领域,从这些基础研究中获得的见解预计将广泛应用于电化学储能的可扩展材料的生成,包括水氧化、固氮和电化学储能。减少二氧化碳排放,具有对全球社会经济影响的潜力。进行这项研究的学生和博士后学者将体验国际交流,包括整个项目团队参与的研讨会。这种催化剂设计方法来自俄亥俄州立大学的 Hannah Shafaat 团队。大学和她的德国合作者专注于开发一种强大的人工氢化酶电催化剂,该团队将使用模型金属酶作为明确的支架,将选定的分子复合物作为分子内电子中继器,对天然氧化还原活性辅因子进行功能建模并建立。它们在电催化中的作用将被固定在电极表面上,充当电子转移伙伴,并且将探讨影响界面电荷转移的系统变量。 (i) 设计和实施整合各个组件的策略;(ii) 应用新颖的原位光谱电化学研究来探究混合结构的 H2 演化机制,以及 (iii) 通过调整次级来优化这些系统通过确定每个组分在催化中所起的作用,可以改进缓慢的步骤,并消除无效或降解的途径,从而系统地提高催化效率。该研究由 NSF-DFG 电合成和电催化牵头机构活动 (NSF-DFG EChem) 机会 NSF 20-578 资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hannah Shafaat其他文献
Hannah Shafaat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hannah Shafaat', 18)}}的其他基金
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
- 批准号:
2346885 - 财政年份:2023
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2108684 - 财政年份:2021
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
CAREER: Metalloenzyme mechanisms probed by resonance Raman spectroscopy
职业:通过共振拉曼光谱探测金属酶机制
- 批准号:
1454289 - 财政年份:2015
- 资助金额:
$ 35.01万 - 项目类别:
Continuing Grant
相似国自然基金
基于光纤激光的DFG红外频率梳光源关键问题的研究
- 批准号:61250017
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
基于可编程光纤激光器与有机非线性晶体的光纤太赫兹融合系统研究
- 批准号:61107087
- 批准年份:2011
- 资助金额:30.0 万元
- 项目类别:青年科学基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
- 批准号:21172265
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
可调谐单频中红外激光器和生物气体同位素的检测研究
- 批准号:60878063
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
40Gbit/s高速全光码型转换的新机理和新技术研究
- 批准号:60577006
- 批准年份:2005
- 资助金额:7.0 万元
- 项目类别:面上项目
相似海外基金
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
- 批准号:
2346885 - 财政年份:2023
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
NSF-DFG Echem: CAS: Electrochemical Pyrrolidone Synthesis: An Integrated Experimental and Theoretical Investigation of the Electrochemical Amination of Levulinic Acid (ElectroPyr)
NSF-DFG Echem:CAS:电化学吡咯烷酮合成:乙酰丙酸 (ElectroPyr) 电化学胺化的综合实验和理论研究
- 批准号:
2140374 - 财政年份:2022
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
NSF-DFG Echem: Electrochemically enhanced low-temperature catalytic ammonia synthesis
NSF-DFG Echem:电化学增强低温催化氨合成
- 批准号:
2140971 - 财政年份:2022
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
NSF-DFG Echem: CAS: Hydrofunctionalization of Alkenes by non-Redox Paired Electrocatalysis
NSF-DFG Echem:CAS:通过非氧化还原配对电催化对烯烃进行氢官能化
- 批准号:
2055451 - 财政年份:2021
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
NSF-DFG EChem: Surface Stability and Oxygen Defect Chemistry of Pyrochlore and Related High-Performing Electrocatalysts for Oxygen Evolution Reaction
NSF-DFG EChem:烧绿石及相关高性能析氧反应电催化剂的表面稳定性和氧缺陷化学
- 批准号:
2055734 - 财政年份:2021
- 资助金额:
$ 35.01万 - 项目类别:
Continuing Grant