Collaborative Research: Theoretical and Algorithmic Foundations of Variational Bayesian Inference

合作研究:变分贝叶斯推理的理论和算法基础

基本信息

  • 批准号:
    2210717
  • 负责人:
  • 金额:
    $ 13.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Spectacular advances in data acquisition, processing and storage techniques offer modern-day statisticians a unique opportunity to analyze large and complex datasets of unprecedented richness which arise in many scientific investigations and in studies in the social and economic fields. Bayesian inference, which combines prior knowledge and data information into a posterior distribution, provides a popular paradigm for probabilistic modeling of complex multi-level datasets and for performing associated inferential or predictive tasks in a principled fashion. For most practical problems, computing the posterior probabilities require numerical approximations; to that end, sampling-based approaches such as Markov chain Monte Carlo and deterministic approximations have both received widespread attention. Among deterministic approaches based on optimization, variational approximations, also commonly referred to as variational inference, is highly popular due to its scalability to large datasets. Through this project, the investigators will explore statistical and algorithmic properties of popular variational procedures and develop new methodology and computational tools grounded on a strong theoretical foundation. The results are targeted to empower practitioners with a better understanding of situations where variational inference is likely to be successful and where potential pitfalls exist. The research will be disseminated through articles and talks at prominent outlets. Additionally, software packages for the methods developed will be made available publicly. The investigators are committed to enhancing the pedagogical component of the proposal through advising students and developing graduate and undergraduate topic courses at their respective institutions.Motivated by the increasing need to mitigate scalability issues in Bayesian computation, variational inference has tremendously grown in popularity over the last two decades as an approximate Bayesian computational technique. Despite the proven empirical successes of variational inference in large complex data domains, systematic investigations into its statistical properties have commenced only recently. Through this project, the investigators will pose a number of foundational questions to address theoretical challenges in understanding and explaining the great empirical success of variational approximations in parameter estimation, statistical inference, and model selection, coupled with applications in novel domains. The investigators will also develop general purpose sufficient conditions to certify convergence of popularly used variational algorithms. The theoretical development will employ tools from dynamical systems, functional optimization, and optimal transport, leading to a unified treatment of statistical and algorithmic aspects of variational inference. In light of this new theory, the investigators will develop modifications to existing algorithms with certifiably better convergence behaviors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据获取,处理和存储技术的壮观进步为现代统计学家提供了一个独特的机会,可以分析大型且复杂的富裕数据集,这些数据集在许多科学研究和社会和经济领域的研究中都产生。 将先验知识和数据信息与后验分布相结合的贝叶斯推论为复杂多级数据集的概率建模以及以原则上的方式执行相关的推论或预测任务提供了流行的范式。对于大多数实际问题,计算后验概率需要数值近似值;为此,基于抽样的方法,例如马尔可夫链蒙特卡洛和确定性近似值,都受到了广泛的关注。在基于优化的确定性方法中,由于其对大型数据集的可扩展性,变异近似值(通常也称为变异推断)非常受欢迎。通过该项目,研究人员将探索流行变异程序的统计和算法属性,并开发基于强大理论基础的新方法和计算工具。结果旨在使从业者能够更好地理解变异推理可能成功并存在潜在陷阱的情况。这项研究将通过文章和在著名渠道进行会谈来传播。此外,将公开提供开发方法的软件包。调查人员致力于通过为学生提供建议,发展研究生和本科主题课程来增强提案的教学成分,并在贝叶斯计算中减轻可伸缩性问题的需求增加,变异推论的越来越大,在最后的推论中,越来越多。二十年是近似贝叶斯计算技术。尽管在大型复杂数据域中证明了变异推断的经验成功,但对其统计特性的系统研究才开始最近才开始。通过该项目,研究人员将提出许多基本问题,以解决理解和解释参数估计,统计推断和模型选择方面近似值的巨大经验成功的理论挑战,再加上新颖域中的应用。研究人员还将开发出足够的条件,以证明普遍使用的变分算法的收敛性。理论发展将采用动态系统,功能优化和最佳运输的工具,从而导致对变异推理的统计和算法方面的统一处理。鉴于这一新理论,研究人员将对具有更好的融合行为的现有算法进行修改。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估评估的评估来审查标准的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yun Yang其他文献

Suppressing flow-induced vibration of HGA by an acoustic PZT actuator in hard disk drives
通过硬盘驱动器中的声学 PZT 执行器抑制 HGA 的流动引起的振动
  • DOI:
    10.1007/s00542-015-2763-5
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guoqing Zhang;Yun Yang;Hui Li;Shengnan Shen;Shijing Wu
  • 通讯作者:
    Shijing Wu
Carbon oxides emissions from lithium-ion batteries under thermal runaway from measurements and predictive model
根据测量和预测模型得出热失控情况下锂离子电池的碳氧化物排放
  • DOI:
    10.1016/j.est.2020.101863
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Yun Yang;Zhirong Wang;Pinkun Guo;Shichen Chen;Huan Bian;Xuan Tong;Lei Ni
  • 通讯作者:
    Lei Ni
Temperature is a key factor influencing the invasion and proliferation of Toxoplasma gondii in fish cells
温度是影响弓形虫在鱼类细胞内侵袭和增殖的关键因素
  • DOI:
    10.1016/j.exppara.2020.107966
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Yun Yang;Shao-Meng Yu;Ke Chen;Geoff Hide;Zhao-Rong Lun;De-Hua Lai
  • 通讯作者:
    De-Hua Lai
K3Sr3Li2Al4B6O20F: A Competitive Nonlinear Optical Crystal for Generation of 266 nm Laser
K3Sr3Li2Al4B6O20F:用于产生 266 nm 激光的具有竞争力的非线性光学晶体
  • DOI:
    10.1039/d2tc02073d
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yun Yang;Shuzhao Huang;Shilie Pan
  • 通讯作者:
    Shilie Pan
Semantic Tradeoff for Heterogeneous Graph Embedding
异构图嵌入的语义权衡

Yun Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yun Yang', 18)}}的其他基金

Index in Dynamics: A Tool to Prove the Entropy Conjecture
动力学索引:证明熵猜想的工具
  • 批准号:
    2000167
  • 财政年份:
    2020
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Fast and Robust Gaussian Process Inference for Bayesian Nonparametric Learning
用于贝叶斯非参数学习的快速且稳健的高斯过程推理
  • 批准号:
    1907316
  • 财政年份:
    2018
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Fast and Robust Gaussian Process Inference for Bayesian Nonparametric Learning
用于贝叶斯非参数学习的快速且稳健的高斯过程推理
  • 批准号:
    1810831
  • 财政年份:
    2018
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant

相似国自然基金

证券监管一线执法团队的监管效果:基于团队协作理论的研究
  • 批准号:
    72372069
  • 批准年份:
    2023
  • 资助金额:
    42 万元
  • 项目类别:
    面上项目
面向纳米网络的协作式移动分子通信技术及其理论研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
6G空地融合网络的协作安全接入与传输理论研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
多机械臂协作系统动力学层级解析建模与协调柔顺控制理论及实验研究
  • 批准号:
    52175083
  • 批准年份:
    2021
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
协作式环境反向散射通信高效传输理论研究
  • 批准号:
    62071093
  • 批准年份:
    2020
  • 资助金额:
    64 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
  • 批准号:
    2403074
  • 财政年份:
    2024
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
  • 批准号:
    2403075
  • 财政年份:
    2024
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Aeolian Grain Entrainment Over Flexible Vegetation Canopies: Theoretical Models, Laboratory Experiments and Fieldwork
合作研究:灵活植被冠层的风沙颗粒夹带:理论模型、实验室实验和实地考察
  • 批准号:
    2327916
  • 财政年份:
    2023
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
  • 批准号:
    2329938
  • 财政年份:
    2023
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Collaborative Research: SHINE: Observational and Theoretical Studies of the Parametric Decay Instability in the Lower Solar Atmosphere
合作研究:SHINE:太阳低层大气参数衰变不稳定性的观测和理论研究
  • 批准号:
    2229101
  • 财政年份:
    2023
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了