Quantum Cellular Automata Dynamics: Integrability, Many-Body Decoherence, and Complex Entanglement
量子元胞自动机动力学:可积性、多体退相干和复杂纠缠
基本信息
- 批准号:2210566
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Complexity science is one of the deep outstanding problems of the 21st century, tapping into such profound questions as the biological origin of consciousness. What are the origins of complexity generally? Does it appear already in quantum mechanics? Do we require a new physical theory, or is complexity an outgrowth of what we know? Noisy intermediate scale quantum (NISQ) computers involve an increasing number of interacting quantum subsystems giving rise to complexity. One way to study such emergent complexity in NISQ computers is with Goldilocks quantum cellular automata (QCA). Goldilocks QCA are dynamic computational rules written into a quantum circuit which involve a trade-off or balance between not too many and not too few in a local neighborhood -- thus the term "Goldilocks". Enhancing the progress of science, this project will connect formerly disparate foundational mathematical and scientific concepts, such as integrability and complexity; point the way to possible beyond-classical computing demonstrations with 2D QCA; and develop new quantum computing paradigms for open quantum systems via irreversible elementary QCA making use of the environment instead of avoiding it, just as living systems do. Additionally, the team proposes a multi-faceted approach to meet broader impact goals. First, they will mentor 2-3 undergraduates per year in research from one of the largest undergraduate physics programs in the US. Second, they will engage internationally by serving on the executive editorial board of the Journal of Physics: Complexity; and by supporting science diplomacy via the U.S. Department of State as a Jefferson Science Fellow alumni. Third, they will engage in educational development in the quantitative study of student collaboration networks in hybrid and virtual class environments; and by creation of a science diplomacy course in the Mines honors program accessible to all STEM students and publicly disseminated. Fourth, they will increase diversity, equity, and inclusion in physics via a supportive, diverse group environment with a track record of success in this area. Finally, at present the quantum workforce is insufficient to meet our national quantum initiative requirements. This program will train a sizeable cadre of students at BS, MS, and PhD levels with practical hands-on experience modeling near-term analog and digital quantum computers, crossing over into quantum networks, to help fill this pressing need. In this project on new insight into entanglement dynamics enabled by NISQ devices, the team will pursue the connections between (i) complex entanglement, (ii) many-body decoherence, and (iii) integrability. QCA provide a practical quantum test-bed, proven in recent work to be realizable on digital quantum computers. (i) They will systematically study the full set of quasi-1D (extended 5-site) and 2D QCA, their complexity properties, and their prospective efficient implementation in digital quantum circuits on the Sycamore chip. Is complex entanglement a result of integrability? Or, are integrable systems, which happen to provably encompass 1D (3-site) Goldilocks QCA, a red herring for complexity? This remains to be resolved. (ii) They will systematically treat the decoherence properties of quasi-1D and 2D Goldilocks and non-Goldilocks QCA under quantum trajectories evolution with realistic conditions for both digital quantum circuits and analog quantum simulators. They will then build on prior studies of the 16 reversible elementary 1D QCA to a representative selection of the remaining 240 irreversible elementary 1D QCA in small quantum systems to see if many-body decoherence properties hold up. This study will include Rule 110, which is classically Turing complete; and point the way to the long-term goal of realizing a quantum version of Conway's game of life. (iii) They will provide a complete proof that 1D 3-site QCA under quite general conditions are integrable, and strong evidence for a conjecture that the proof extends to arbitrary sized neighborhoods. To this end they will study thermalization via a truncated generalized Gibbs ensemble based on newly discovered conserved charges; scrambling via the dynamics of the out-of-time-order correlator; and Page curves and spectral characteristics including many-body scars.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
复杂性科学是 21 世纪最深刻的突出问题之一,它探讨了意识的生物起源等深刻问题。 一般来说,复杂性的根源是什么? 它已经出现在量子力学中了吗? 我们是否需要新的物理理论,或者复杂性是我们已知的产物? 嘈杂的中级量子(NISQ)计算机涉及越来越多的相互作用的量子子系统,从而增加了复杂性。 研究 NISQ 计算机中这种突发复杂性的一种方法是使用金发姑娘量子细胞自动机 (QCA)。 Goldilocks QCA 是写入量子电路的动态计算规则,涉及局部邻域中不太多和不太少之间的权衡或平衡 - 因此称为“Goldilocks”。 为了促进科学进步,该项目将连接以前不同的基础数学和科学概念,例如可积性和复杂性;为通过 2D QCA 进行可能的超越经典计算演示指明道路;并通过不可逆的基本 QCA 为开放量子系统开发新的量子计算范例,利用环境而不是避免环境,就像生命系统一样。 此外,该团队提出了一种多方面的方法来实现更广泛的影响目标。 首先,他们每年将指导 2-3 名本科生参与美国最大的本科物理项目之一的研究。 其次,他们将担任《物理学杂志:复杂性》的执行编辑委员会成员,参与国际事务;并作为杰斐逊科学研究员校友通过美国国务院支持科学外交。第三,他们将参与混合和虚拟课堂环境中学生协作网络的定量研究的教育发展;在矿业荣誉项目中开设科学外交课程,向所有 STEM 学生开放并公开传播。 第四,他们将通过支持性的、多元化的团体环境,并在该领域取得成功的记录,增加物理学的多样性、公平性和包容性。 最后,目前量子劳动力不足以满足我们国家量子倡议的要求。 该项目将培训一大批学士、硕士和博士级别的学生,他们具有对近期模拟和数字量子计算机进行建模、跨入量子网络的实际动手经验,以帮助满足这一迫切需求。在这个关于 NISQ 设备实现的纠缠动力学新见解的项目中,该团队将寻求 (i) 复杂纠缠、(ii) 多体退相干和 (iii) 可积性之间的联系。 QCA 提供了一个实用的量子测试平台,最近的工作证明可以在数字量子计算机上实现。 (i) 他们将系统地研究全套准一维(扩展五位点)和二维 QCA、它们的复杂性特性以及它们在 Sycamore 芯片上的数字量子电路中的预期高效实现。 复杂的纠缠是可积性的结果吗? 或者,可积系统(恰好被证明包含 1D(3 站点)Goldilocks QCA)是否是复杂性的转移注意力? 这还有待解决。 (ii) 他们将在数字量子电路和模拟量子模拟器的现实条件下,系统地处理准一维和二维金发姑娘和非金发姑娘 QCA 在量子轨迹演化下的退相干特性。 然后,他们将在之前对 16 个可逆基本 1D QCA 的研究基础上,对小型量子系统中剩余的 240 个不可逆基本 1D QCA 进行代表性选择,看看多体退相干特性是否成立。 这项研究将包括规则 110,它是经典图灵完备的;并为实现康威生命游戏的量子版本的长期目标指明了道路。 (iii) 他们将提供完整的证明,证明 1D 3 站点 QCA 在相当一般的条件下是可积的,并提供有力的证据来证明该证明扩展到任意大小的邻域。 为此,他们将通过基于新发现的守恒电荷的截断广义吉布斯系综来研究热化作用;通过乱序相关器的动态进行加扰;该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrable fractional modified Korteweg–deVries, sine-Gordon, and sinh-Gordon equations
- DOI:10.1088/1751-8121/ac8844
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:M. Ablowitz;Joel B. Been;L. Carr
- 通讯作者:M. Ablowitz;Joel B. Been;L. Carr
Complex systems in the spotlight: next steps after the 2021 Nobel Prize in Physics
- DOI:10.1088/2632-072x/ac7f75
- 发表时间:2023-03-01
- 期刊:
- 影响因子:2.7
- 作者:Bianconi, Ginestra;Arenas, Alex;Yasseri, Taha
- 通讯作者:Yasseri, Taha
Emergent complex quantum networks in continuous-variables non-Gaussian states
- DOI:10.1088/2058-9565/accdfd
- 发表时间:2020-12
- 期刊:
- 影响因子:6.7
- 作者:M. Walschaers;Bhuvanesh Sundar;N. Treps;L. Carr;V. Parigi
- 通讯作者:M. Walschaers;Bhuvanesh Sundar;N. Treps;L. Carr;V. Parigi
Correlations between student connectivity and academic performance: A pandemic follow-up
学生连通性与学业成绩之间的相关性:大流行的后续行动
- DOI:10.1103/physrevphyseducres.19.010106
- 发表时间:2023
- 期刊:
- 影响因子:3.1
- 作者:Crossette, Nathan;Carr, Lincoln D.;Wilcox, Bethany R.
- 通讯作者:Wilcox, Bethany R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lincoln Carr其他文献
Accelerating Progress Towards Practical Quantum Advantage: The Quantum Technology Demonstration Project Roadmap
加速实现实用量子优势:量子技术示范项目路线图
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
P. Alsing;P. Battle;J. Bienfang;Tammie L. Borders;Tina L. Brower;Lincoln Carr;F. Chong;S. Dadras;B. Demarco;I. Deutsch;E. Figueroa;D. Freedman;H. Everitt;Daniel Gauthier;E. Johnston;Jungsang Kim;M. Kira;Prem Kumar;P. Kwiat;J. Lekki;Anjul Loiacono;M. Lončar;J. R. Lowell;M. Lukin;C. Merzbacher;Aaron J. Miller;C. Monroe;J. Pollanen;D. Pappas;M. Raymer;R. Reano;B. Rodenburg;M. Savage;T. Searles;Jieping Ye - 通讯作者:
Jieping Ye
Quantum simulator design and exploration with open source matrix product state codes
使用开源矩阵产品状态代码进行量子模拟器设计和探索
- DOI:
10.52843/cassyni.65w4st - 发表时间:
2021 - 期刊:
- 影响因子:2.9
- 作者:
Lincoln Carr - 通讯作者:
Lincoln Carr
Lincoln Carr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lincoln Carr', 18)}}的其他基金
Collaborative Research: NRT-QL: A Program for Training a Quantum Workforce
合作研究:NRT-QL:量子劳动力培训计划
- 批准号:
2125899 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Workshop: Quantum Engineering Education
研讨会:量子工程教育
- 批准号:
2110432 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
QLCI-CG: The Open Quantum Frontier Institute
QLCI-CG:开放量子前沿研究所
- 批准号:
1936835 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I: Workshop: Architectures and Opportunities in Programmable Quantum Simulators
融合加速器第一阶段:研讨会:可编程量子模拟器的架构和机遇
- 批准号:
1945947 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Complex Networks on Quantum States in AMO Platforms
AMO 平台中量子态的复杂网络
- 批准号:
1806372 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SI2-SSE: Entangled Quantum Dynamics in Closed and Open Systems, an Open Source Software Package for Quantum Simulator Development and Exploration of Synthetic Quantum Matter
SI2-SSE:封闭和开放系统中的纠缠量子动力学,用于量子模拟器开发和合成量子物质探索的开源软件包
- 批准号:
1740130 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Open-System Quantum Many-Body Entangled Dynamics of Ultracold Molecules
超冷分子的开放系统量子多体纠缠动力学
- 批准号:
1520915 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Macroscopic Quantum Tunneling in Ultracold Quantum Gases
超冷量子气体中的宏观量子隧道
- 批准号:
1306638 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Matrix-Product-State Open Source Code and the Many Body Physics of Ultracold Molecules
矩阵积态开源代码和超冷分子的多体物理学
- 批准号:
1207881 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Quantum Many-Body Dynamics of Ultracold Quantum Gases
超冷量子气体的量子多体动力学
- 批准号:
1067973 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
基于块体模型细胞自动机的节理岩质边坡稳定性和演化机理研究
- 批准号:51778067
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
不规则互作图可靠性及其在蛋白质相互作用网络中的应用
- 批准号:61702100
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
随机多参数分数离散余弦变换及图像加密研究
- 批准号:61662047
- 批准年份:2016
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
基于应变能密度的单层网壳强震失效机理及智能预测方法研究
- 批准号:51608452
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
文化生态学视角下浙江省传统村落空间演化的动力机制及其动态模拟
- 批准号:51508497
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantum Walks and Cellular Automata for Quantum Information Processing
用于量子信息处理的量子行走和元胞自动机
- 批准号:
2310794 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Simulation and Design of Molecular Spin Quantum-Dot Cellular Automata
分子自旋量子点元胞自动机的模拟与设计
- 批准号:
17K14550 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Modelling of environmental effects on silicon dangling bond quantum cellular automata circuits and development of simulation tools
环境对硅悬键量子细胞自动机电路影响的建模和仿真工具的开发
- 批准号:
478777-2015 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Engage Grants Program
Exploring coherent dynamics and field clocking of quantum-dot cellular automata circuits
探索量子点元胞自动机电路的相干动力学和场时钟
- 批准号:
327333-2011 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Exploring coherent dynamics and field clocking of quantum-dot cellular automata circuits
探索量子点元胞自动机电路的相干动力学和场时钟
- 批准号:
327333-2011 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual