SBIR Phase I: A real-time precision nutrient analysis and management system for hydroponic farming operations
SBIR 第一阶段:用于水培农业作业的实时精确养分分析和管理系统
基本信息
- 批准号:2210046
- 负责人:
- 金额:$ 25.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The broader impact of this Small Business Innovation Research (SBIR) Phase I project is to promote the viability and sustainability of small-to-medium indoor, urban, and controlled environment agriculture (CEA) farms. As the global population grows to 10 billion by 2050, the agriculture industry will need to produce 70% more food using only 5% more land. Indoor farming can make a significant contribution to meet this demand sustainably. Indoor farmers are also seasonally and geographically independent, which means they can help meet demands for locally produced fresh foods and are protected from extreme weather events. These farms primarily use soilless growing methods, such as hydroponics, that currently suffer from critical needs for efficient and affordable methods to monitor and manage nutrients and water in order to be financially viable and environmentally sustainable. The proposed project provides an innovative solution for nutrient management in hydroponic farming, thereby lowering the costs, increasing the yield potential, and supporting the viability of such farms. By supporting the expansion of the national hydroponics industry, this project will increase the local production of and expand access to fresh produce.This SBIR Phase I project will develop a nutrient management system to provide CEA farmers with real-time information about the nutrients in the growth solution of their crops. The proposed solution will utilize ion-selective electrode (ISE) technology and a decision support system powered by machine learning (ML). This project will focus on the critically needed engineering and data analytics research and development to de-risk major technical challenges in the development of the nutrient management system, providing proof-of-feasibility. The key objectives of this project are to: 1) design a special chamber for the sensors to minimize the interference and increase accuracy, 2) validate the feasibility and accuracy of this new design in a greenhouse setting, 3) develop a predictive algorithm to automatically calibrate the sensors, and 4) measure and predict deficiencies in leafy greens production: collecting empirical evidence of nutrient deficiency to train ML models to identify, and ultimately, predict a deficiency prior to when it is observable.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该小型企业创新研究 (SBIR) 第一阶段项目的更广泛影响是促进中小型室内、城市和受控环境农业 (CEA) 农场的生存能力和可持续性。到 2050 年,全球人口将增长到 100 亿,农业将需要仅使用 5% 的土地来生产 70% 的粮食。室内农业可以为可持续地满足这一需求做出重大贡献。室内农民在季节和地理上也是独立的,这意味着他们可以帮助满足对当地生产的新鲜食品的需求,并免受极端天气事件的影响。这些农场主要使用无土种植方法,例如水培法,目前迫切需要高效且负担得起的方法来监测和管理养分和水,以实现经济上可行和环境上可持续。拟议的项目为水培农业的养分管理提供了创新的解决方案,从而降低了成本,增加了产量潜力,并支持了此类农场的生存能力。通过支持国家水培产业的扩张,该项目将增加当地新鲜农产品的产量并扩大获得新鲜农产品的机会。该 SBIR 第一阶段项目将开发一个养分管理系统,为 CEA 农民提供有关农产品中养分的实时信息。作物的生长解决方案。 拟议的解决方案将利用离子选择电极(ISE)技术和由机器学习(ML)驱动的决策支持系统。该项目将重点关注急需的工程和数据分析研究和开发,以消除营养管理系统开发中的主要技术挑战风险,并提供可行性证明。该项目的主要目标是:1)为传感器设计一个特殊的室,以最大限度地减少干扰并提高准确性,2)在温室环境中验证这一新设计的可行性和准确性,3)开发一种预测算法来自动校准传感器,4) 测量和预测绿叶蔬菜生产中的缺陷:收集营养缺乏的经验证据来训练机器学习模型,以识别并最终在可观察到的缺陷之前进行预测。该奖项反映了 NSF 的法定使命和通过使用基金会的智力优点和更广泛的影响审查标准进行评估,该项目被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Hayden其他文献
Carlos Hayden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
热带河口特有鱼类尖鳍鲤早期生活史不同阶段的栖息地利用变化及驱动机制
- 批准号:32360917
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
PPP项目跨阶段监管机制研究
- 批准号:72301115
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗生素对不同生长阶段蓝藻光合电子传递和生理代谢的影响及分子机制研究
- 批准号:52300219
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多活性纳米酶多靶点全阶段治疗特发性肺纤维化
- 批准号:32371438
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于现代监测的湘西惹迷洞MIS2阶段石笋碳同位素和微量元素记录重建研究
- 批准号:42371164
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Testing computational feasibility and effectiveness of real time traffic nearcast for wildfire evacuation at the wildland urban interface
SBIR 第一阶段:测试荒地城市界面野火疏散实时交通近播的计算可行性和有效性
- 批准号:
2322210 - 财政年份:2023
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
SBIR Phase II: A Blockchain Ecosystem for Encrypting Real World Data and Developing Artificial Intelligence to Optimize Pharmacy Prior Authorization
SBIR 第二阶段:用于加密现实世界数据和开发人工智能以优化药房预授权的区块链生态系统
- 批准号:
2200163 - 财政年份:2023
- 资助金额:
$ 25.6万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Real-time computer automated identification and quantification of insects entering the SolaRid insect control device (ICD)
SBIR 第二阶段:实时计算机自动识别和量化进入 SolaRid 昆虫控制装置 (ICD) 的昆虫
- 批准号:
2247237 - 财政年份:2023
- 资助金额:
$ 25.6万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Real-Time Allergen Detection Technology for Dietary Proteins Transferred to Human Milk
SBIR 第一阶段:转移到母乳中的膳食蛋白的实时过敏原检测技术
- 批准号:
2321861 - 财政年份:2023
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
SBIR Phase I: Real-Time Artificial Intelligence (AI) Bidirectional American Sign Language (ASL) Communication System
SBIR第一阶段:实时人工智能(AI)双向美国手语(ASL)通信系统
- 批准号:
2213235 - 财政年份:2023
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant