ERI: A Novel Multiphysics Framework for Fluid Circulation and Oxygen Transport in Vocal Folds

ERI:声带中液体循环和氧气运输的新型多物理场框架

基本信息

  • 批准号:
    2138225
  • 负责人:
  • 金额:
    $ 19.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Voice disorders have the prevalence of almost 30% in the general population and 60% in professions with high voice usage, such as educators, public speakers, and singers. Most voice dysfunctions have a one-to-one correspondence with the dynamical flow-structure interaction feature of phonation, and localized vocal fold lesions are associated with decreased blood flow and lower oxygen levels within the tissue. There is thus a profound need for understanding the effect of fluid dynamics within the vocal fold on oxygen flow since local changes in tissue oxygenation and perfusion is a critical metric of its functional state. The research results will provide a deep understanding of the fluid physics of phonation and its contribution to hydration and oxygen transport in the vocal fold. The project will also encompass educational plans that involve the operation of a YouTube channel, summer undergraduate research experience, as well as outreach activities to local K-12 schools and the public through the Carnegie Science Center Museum and Women in Science group, through the programs that foster the participation of low-income high school students, K-6 students, and girls in STEM. The goal of this project is to develop a multi-physics computational framework to investigate the role of interstitial liquid distribution and systemic hydration of the vocal fold during phonation using a biphasic description of vocal fold tissue. Systemic hydration plays a key chemo-mechanical role in the function of vocal folds, which is still not fully understood. The project will fill this gap by combining a fluid-poroelastic structure interaction model with an oxygen transport model, in two specific aims: (1) developing a fluid-structure interaction modeling approach integrating the fully coupled behavior between turbulent glottal airflow and porous vocal fold’s structure to provide a spatiotemporal prediction of filtration velocity, as well as oxygen concentration within the porous vocal fold, and (2) investigating the relationship between interstitial fluid circulation and oxygen flow in the vocal fold, in order to identify the extent to which vocal fold dehydration attenuates oxygen concentration. The Reynolds-Averaged Navier-Stokes equations and Biot’s poroelasticity equations are going to be used to model airflow through the larynx and fluid-saturated vocal fold tissue respectively, while for oxygen transport due to the porous flow in the tissue, the convection-diffusion–reaction equation will be applied. The proposed measurements and numeric will quantify for the first time the three-dimensional interstitial convective fluid velocities that drive the mass transport and provide systemic hydration of the tissue, as well as detailed data on oxygen concentration inside the vocal fold under different phonation conditions, that acts as an indicator for tissue hypoxia. Results will highlight the importance of including poroelasticity in phonation models which promotes new visions for the management of vocal diseases, such as in the development of voice prostheses for laryngectomized patients. The findings are also directly applicable to other problems involving fluid-structure interaction and mass transport, such as cardiovascular diseases and tumor metastasis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来源于《2021 年美国救援计划法案》(公法 117-2)。声音障碍在普通人群中的患病率接近 30%,在声音使用率较高的职业中患病率高达 60%。大多数声音功能障碍与发声的动态流动结构相互作用特征具有一一对应关系,局部声带损伤与声带内血流减少和氧含量降低有关。因此,迫切需要了解声带内的流体动力学对氧流的影响,因为组织氧合和灌注的局部变化是其功能状态的关键指标。研究结果将提供对流体的深入了解。该项目还将包括教育计划,包括 YouTube 频道的运营、暑期本科生研究经验以及对当地 K-12 学校和学校的外展活动。公众可以通过卡内基科学中心博物馆和科学女性小组通过促进低收入高中生、K-6 学生和女孩参与 STEM 的项目,该项目的目标是开发一个多物理计算框架来研究间隙的作用。使用声带组织的双相描述来研究发声过程中声带的液体分布和全身水化系统水化在声带功能中发挥着关键的化学机械作用,该项目将填补这一空白。通过将流体-多孔弹性结构相互作用模型与氧传输模型相结合,有两个具体目标:(1)开发一种流体-结构相互作用建模方法,集成湍流声门气流和多孔声带结构之间的完全耦合行为,以提供时空预测(2)研究声带间质液循环与氧流量之间的关系,以确定声带的渗透程度脱水会减弱氧气浓度。雷诺平均纳维-斯托克斯方程和比奥弹性方程将分别用于模拟通过喉部和液体饱和声带组织的气流,而对于由于组织中的多孔流动而导致的氧气输送,将应用对流扩散反应方程,所提出的测量和数值将首次量化三维间隙对流流体。驱动质量传输并提供组织全身水合作用的速度,以及不同发声条件下声带内氧浓度的详细数据,这些数据可作为组织缺氧的指标。结果将强调在发声中包含孔隙弹性的重要性。这些模型促进了声乐疾病治疗的新愿景,例如为喉切除患者开发发声假体,这些发现也直接适用于涉及流体-结构相互作用和质量传输的其他问题,例如。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analyzing the Effects of Multi-Layered Porous Intraluminal Thrombus on Oxygen Flow in Abdominal Aortic Aneurysms
多层多孔腔内血栓对腹主动脉瘤血氧流量的影响分析
  • DOI:
    10.3390/oxygen2040034
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Throop, Alexis;Badr, Durwash;Durka, Michael;Bukač, Martina;Zakerzadeh, Rana
  • 通讯作者:
    Zakerzadeh, Rana
Gender in human phonation: Fluid–structure interaction and vocal fold morphology
人类发声中的性别:流体结构相互作用和声带形态
  • DOI:
    10.1063/5.0146162
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    McCollum, Isabella;Throop, Alexis;Badr, Durwash;Zakerzadeh, Rana
  • 通讯作者:
    Zakerzadeh, Rana
Analyzing the contribution of vasa vasorum in oxygenation of the aneurysmal wall: A computational study
分析滋养血管对动脉瘤壁氧合的贡献:一项计算研究
Prediction of wall stress and oxygen flow in patient-specific abdominal aortic aneurysms: the role of intraluminal thrombus
患者特异性腹主动脉瘤壁应力和氧流量的预测:腔内血栓的作用
Addressing Test Anxiety Using Game-Based Assessment
使用基于游戏的评估解决考试焦虑
  • DOI:
    10.1007/s43683-022-00082-3
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bonefont, Victoria;Carbino, Burton;Zakerzadeh, Rana
  • 通讯作者:
    Zakerzadeh, Rana
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rana Zakerzadeh其他文献

Computational analysis of energy distribution of coupled blood flow and arterial deformation
血流与动脉变形耦合能量分布的计算分析
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rana Zakerzadeh;M. Bukač;P. Zunino
  • 通讯作者:
    P. Zunino
Academic Games as a Form of Increasing Student Engagement in Remote Teaching
学术游戏是提高学生远程教学参与度的一种形式
A material modeling approach for the effective response of planar soft tissues for efficient computational simulations.
一种材料建模方法,可有效响应平面软组织,从而实现高效的计算模拟。
Numerical analysis of stenoses severity and aortic wall mechanics in patients with supravalvular aortic stenosis
主动脉瓣上狭窄患者狭窄严重程度和主动脉壁力学的数值分析
  • DOI:
    10.1016/j.compbiomed.2021.104573
  • 发表时间:
    2021-06-12
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Talha Lone;Angelica Alday;Rana Zakerzadeh
  • 通讯作者:
    Rana Zakerzadeh
A Computational model for fluid-porous structure interaction
流体-多孔结构相互作用的计算模型

Rana Zakerzadeh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rana Zakerzadeh', 18)}}的其他基金

CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
  • 批准号:
    2338676
  • 财政年份:
    2024
  • 资助金额:
    $ 19.57万
  • 项目类别:
    Standard Grant

相似国自然基金

海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Development of AI/ML-ready shared repository for parametric multiphysics modeling datasets: standardization for predictive modeling of selective brain cooling after traumatic injury
开发用于参数多物理场建模数据集的 AI/ML 就绪共享存储库:创伤后选择性脑冷却预测模型的标准化
  • 批准号:
    10842926
  • 财政年份:
    2022
  • 资助金额:
    $ 19.57万
  • 项目类别:
Multiphysics of bubbles and nanoparticles in porous media: Novel approaches to the remediation of subsurface environments contaminated by chlorinated organic substances
多孔介质中气泡和纳米颗粒的多物理场:修复受氯化有机物质污染的地下环境的新方法
  • 批准号:
    194309-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 19.57万
  • 项目类别:
    Discovery Grants Program - Individual
Multiphysics of bubbles and nanoparticles in porous media: Novel approaches to the remediation of subsurface environments contaminated by chlorinated organic substances
多孔介质中气泡和纳米颗粒的多物理场:修复受氯化有机物质污染的地下环境的新方法
  • 批准号:
    194309-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 19.57万
  • 项目类别:
    Discovery Grants Program - Individual
Multiphysics of bubbles and nanoparticles in porous media: Novel approaches to the remediation of subsurface environments contaminated by chlorinated organic substances
多孔介质中气泡和纳米颗粒的多物理场:修复受氯化有机物质污染的地下环境的新方法
  • 批准号:
    194309-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 19.57万
  • 项目类别:
    Discovery Grants Program - Individual
Multiphysics of bubbles and nanoparticles in porous media: Novel approaches to the remediation of subsurface environments contaminated by chlorinated organic substances
多孔介质中气泡和纳米颗粒的多物理场:修复受氯化有机物质污染的地下环境的新方法
  • 批准号:
    194309-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 19.57万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了