Collaborative Research: HAYSTAC Quantum Enhanced

合作研究:HAYSTAC 量子增强

基本信息

  • 批准号:
    2209556
  • 负责人:
  • 金额:
    $ 45.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Under the award "HAYSTAC Quantum Enhanced", the University of California Berkeley and the University of Colorado participate in one of the forefront experiments in the world seeking to discover the identity of the dark matter of the universe. This experiment searches for a hypothetical elementary particle, called the axion, which is predicted to be extremely light, perhaps a trillionth of the mass of an electron, and extremely weakly interacting. The principle of the experiment is that in the presence of a strong magnetic field, axions can convert to microwave photons, which can be detected by quantum-sensitive amplifiers and receivers. The conversion process can be resonantly enhanced in a tunable microwave cavity; the R&D, production and operation of these microwave cavities is the responsibility of UC Berkeley in the collaboration. The University of Colorado develops the quantum sensors. The other institutions are Johns Hopkins University and Yale University, where the experiment is sited. HAYSTAC has been the world leader in the application of quantum sensing to dark matter searches. Under previous NSF funding, HAYSTAC was the first dark matter experiment to evade a fundamental theorem of quantum mechanics on the irreducible noise of amplifiers, the Standard Quantum Limit, by a sophisticated technique known as squeezed-vacuum states. Discovery of dark matter would constitute a revolution in our understanding of cosmology, and excite generations of young students to pursue careers in physical science and engineering. HAYSTAC has also been a driver for breakthroughs in quantum information science, and advanced microwave concepts, and has generated several Ph.D. students who have gone on to careers in the fields of quantum computing and accelerator science.Under NSF funding, a Yale-Berkeley-Colorado collaboration came together in 2011 to design, build and operate HAYSTAC (now joined by Johns Hopkins), a small experiment serving both as an innovation test-bed to develop new cavity designs and quantum-enhanced photon detection schemes, and as a pathfinder to take first data in the 10–50 micro-eV mass range. Immediately upon commissioning in 2015 with the first-ever use of a Josephson Parametric Amplifier (JPA), HAYSTAC achieved essentially quantum-limited operation. In the past three years, the collaboration successfully implemented a two-JPA squeezed-vacuum state receiver, circumventing the Standard Quantum Limit (SQL) entirely and establishing an exclusion limit around 17 micro-eV; these results being published in Nature in February 2021. HAYSTAC is the only dark matter experiment to employ a squeezed-state receiver (SSR), and along with LIGO one of only two experiments exploiting squeezed states for data production in the world of fundamental physics. In parallel with the development of quantum-enhanced receivers, the collaboration has pursued similar advances in microwave resonators. Under this proposal, the team will complete and analyze the ongoing long run with the current squeezed state receiver, which is operating with a scan rate further improved from the first SSR. Berkeley will then deploy a new and improved symmetrized-tuner design cavity, and another long run will commence to move upwards in frequency toward a recent theoretical prediction. Colorado will develop and test a prototype of their cavity entanglement and state-swapping concept (published in Physical Review X Quantum), which should be complete within this grant period; whereas the current SSR yielded a factor of ×2 in scan rate, this new scheme is expected to produce a ×15 speedup. Colorado and Berkeley will jointly carry out the integration and commissioning in HAYSTAC. Berkeley will continue R&D on Photonic Band Gap resonators for TE-mode suppression, metamaterial resonators to reach much higher frequencies, and continued mitigation of the anomalous thermal noise contribution. Each of these innovations dramatically enhance the discovery potential of HAYSTAC.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
加州大学伯克利分校和科罗拉多大学参与世界上的最前沿实验之一,试图发现宇宙的深色物质的身份,加州大学伯克利分校和科罗拉多大学参加了奖项。该实验搜索了一个假设的基本粒子,称为轴,该粒子被预测为极度轻,也许是电子质量的一万亿美元,并且相互作用极为弱。实验的原理是,在存在强磁场的情况下,轴可以转换为微波照片,可以通过量子敏感的放大器和接收器检测到。在可调的微波腔中可以共鸣。这些微波炉的研发,生产和运行是加州大学伯克利分校在合作中的责任。科罗拉多大学开发了量子传感器。其他机构是约翰·霍普金斯大学和耶鲁大学,该大学位于该实验。海斯塔克(Haystac)一直是对暗物质搜索的量子敏感性的世界领导者。在以前的NSF资金下,Haystac是第一个探索量子力学基本理论的暗物质实验,该理论是通过一种复杂的技术被称为挤压 - 空中态的复杂技术,即放大器的不可还原噪声。发现暗物质将构成我们对宇宙学的理解的一场革命,并激发了几代年轻学生从事物理科学和工程领域的职业。 Haystac还一直是量子信息科学和高级微波概念突破的驱动力,并获得了多个博士学位。 students who have gone on to careers in the fields of quantum computing and accelerator science.Under NSF funding, a Yale-Berkeley-Colorado collaboration came together in 2011 to design, build and operate HAYSTAC (now Joined by Johns Hopkins), a small experiment serving both as an innovation test-bed to develop new cavity designs and quantum-enhanced photon detection schemes, and as a pathfinder to take在10–50微EV质量范围内的第一个数据。首次使用约瑟夫森参数放大器(JPA)在2015年进行调试后,Haystac实现了基本上是量子限制的操作。在过去的三年中,该协作成功实施了两次JPA的挤压状态接收器,完全规避了标准量子限制(SQL),并在17 micro-ev左右建立了排除限制;这些结果于2021年2月在自然界发表。海斯塔克是唯一采用挤压状态接收器(SSR)的暗物质实验,以及利戈(Ligo)在基本物理学领域中仅利用挤压状态进行数据生产的两个实验之一。随着量子增强接收器的发展,该协作在微波谐振器中也取得了类似的进步。根据该提案,团队将通过目前的挤压州接收器完成并分析正在进行的长期持续的长期,该州接收器的扫描速率与第一个SSR相比进一步提高。然后,伯克利将部署一个新的且改进的对称的调节设计腔,另一个长期将开始向上移动频率向最近的理论预测。科罗拉多州将开发和测试其腔纠缠和状态交换概念的原型(在物理评论x量子中发表),该原型应在本赠款期内完成;尽管当前的SSR产生的扫描速率为×2倍,但该新方案有望产生×15的加速。科罗拉多州和伯克利将共同在海斯塔克进行整合和调试。伯克利将继续在光子带隙谐振器上进行研发,以进行TE模式抑制,超材料谐振器以达到更高的频率,并继续缓解异常的热噪声贡献。这些创新都显着增强了Haystac的发现潜力。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被视为通过评估而被视为珍贵的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New results from HAYSTAC’s phase II operation with a squeezed state receiver
  • DOI:
    10.1103/physrevd.107.072007
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    H. C. M. J. Jewell;A. Leder;K. Backes;Xiran Bai;K. Bibber;B. Brubaker;S. Cahn;A. Droster;Maryam H. Esmat;Sumita Ghosh;Eleanor Graham;G. Hilton;H. Jackson;C. Laffan;S. Lamoreaux;K. Lehnert;S. Lewis;M. Malnou;R. Maruyama;D. Palken;N. Rapidis;E. Ruddy;M. Simanovskaia;Sukhman Singh;D. Speller;L. Vale;H. Wang;Y. Zhu
  • 通讯作者:
    H. C. M. J. Jewell;A. Leder;K. Backes;Xiran Bai;K. Bibber;B. Brubaker;S. Cahn;A. Droster;Maryam H. Esmat;Sumita Ghosh;Eleanor Graham;G. Hilton;H. Jackson;C. Laffan;S. Lamoreaux;K. Lehnert;S. Lewis;M. Malnou;R. Maruyama;D. Palken;N. Rapidis;E. Ruddy;M. Simanovskaia;Sukhman Singh;D. Speller;L. Vale;H. Wang;Y. Zhu
Searching for dark matter with plasma haloscopes
用等离子体光环仪寻找暗物质
  • DOI:
    10.1103/physrevd.107.055013
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Millar, Alexander J.;Anlage, Steven M.;Balafendiev, Rustam;Belov, Pavel;van Bibber, Karl;Conrad, Jan;Demarteau, Marcel;Droster, Alexander;Dunne, Katherine;Rosso, Andrea Gallo
  • 通讯作者:
    Rosso, Andrea Gallo
共 2 条
  • 1
前往

Karl van Bibber其他文献

Tunable wire metamaterials for an axion haloscope
用于轴子光晕镜的可调谐线超材料
  • DOI:
  • 发表时间:
    2023
    2023
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Nolan Kowitt;R. Balafendiev;Dajie Sun;M. Wooten;A. Droster;M. Gorlach;Karl van Bibber;P. Belov
    Nolan Kowitt;R. Balafendiev;Dajie Sun;M. Wooten;A. Droster;M. Gorlach;Karl van Bibber;P. Belov
  • 通讯作者:
    P. Belov
    P. Belov
共 1 条
  • 1
前往

Karl van Bibber的其他基金

Collaborative Research: HAYSTAC Sub-Quantum
合作研究:HAYSTAC 次量子
  • 批准号:
    1914199
    1914199
  • 财政年份:
    2019
  • 资助金额:
    $ 45.74万
    $ 45.74万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative Research: ADMX-HF Extreme Axion Experiment
合作研究:ADMX-HF 极端轴子实验
  • 批准号:
    1607417
    1607417
  • 财政年份:
    2016
  • 资助金额:
    $ 45.74万
    $ 45.74万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative Research: ADMX-HF Early Start
合作研究:ADMX-HF 早期启动
  • 批准号:
    1306729
    1306729
  • 财政年份:
    2013
  • 资助金额:
    $ 45.74万
    $ 45.74万
  • 项目类别:
    Continuing Grant
    Continuing Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 45.74万
    $ 45.74万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 45.74万
    $ 45.74万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
    $ 45.74万
  • 项目类别:
    Standard Grant
    Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
  • 批准号:
    2314750
    2314750
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
    $ 45.74万
  • 项目类别:
    Cooperative Agreement
    Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
  • 批准号:
    2315219
    2315219
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
    $ 45.74万
  • 项目类别:
    Standard Grant
    Standard Grant