Zwitterion-Decorated Silica Nanoparticle Networks in Ionic Liquid Electrolytes

离子液体电解质中两性离子修饰的二氧化硅纳米颗粒网络

基本信息

  • 批准号:
    2209500
  • 负责人:
  • 金额:
    $ 36.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Part 1: Non-technical SummarySafe, reliable batteries are critically needed for future mobile devices and wearable electronics. Both lithium and sodium ion-based batteries can provide high operating voltages and large energy densities, but many of the ion-transporting electrolyte materials used today are flammable and may present a safety hazard if the battery fails. A class of room temperature molten salts, known as ionic liquids, can eliminate flammability concerns, but a fundamental challenge remains in how to promote the selective motion of the targeted cations (Li+, Na+) over that of the other ions also present in the electrolyte. This project, supported by the Solid State and Materials Chemistry program and the Polymer program in the Division of Materials Research at NSF, aims to address this challenge by creating inorganic oxide materials that are coated with zwitterionic chemical groups. Zwitterionic groups contain an equal number of both positively- and negatively-charged atoms, separated by a distance of just a few bond lengths, which are known to interact strongly with electrolyte ions as well as with one another. This project tests the hypothesis that zwitterion-decorated oxide nanoparticle networks can selectively enhance Li+ and Na+ transport in ionic liquid-based electrolytes. The research generate needed insights into the design of safer future battery electrolytes and reveal new fundamental information about zwitterion-ion interactions in nonaqueous, ion-dense electrolytes. A new K-12 outreach activity is also developed as part of this project. The activity will inform pre-college students about future energy storage technologies, connect them to the research findings of this study, and foster their interest in pursuing a career in science or engineering.Part 2: Technical SummaryThe primary objective of this project is to selectively enhance the transport of Li+ and Na+ ions within ionic liquid electrolytes using organic zwitterionic (ZI) functional group-decorated silica nanostructured networks. Two different manifestations of this unique materials class will be pursued: (1) ZI group-decorated oxide nanoparticles (ZIONs), and (2) ZI group-functionalized mesoporous oxide networks (zwitterionosilicas). A key hypothesis of this study is that ZI group-functionalized silica nanostructures assembled into a continuous three-dimensional network within an ionic liquid electrolyte can enable a substantial improvement in selective alkali metal cation transport (Li+ or Na+) compared to that in the liquid electrolyte itself, while also creating a robust composite gel electrolyte layer that can prevent leakage. By spatially defining the region of ZI group/alkali metal cation interaction to be located along the exposed surfaces of the ZIONs or zwitterionosilicas, it is posited that this approach can effectively maximize the ability of ZI units to enhance Li+/Na+ conductivity within these inherently safer electrolytes. This project, funded by the Solid State and Materials Chemistry program and the Polymer program in the Division of Materials Research at NSF, encompasses the synthesis of ZIONs and zwitterionosilicas featuring different ZI chemistries and the measurement of relevant ion transport metrics for their combinations with ionic liquid electrolytes. Additionally, the work provides mentored undergraduate and graduate research experiences for a diverse group of students, supporting their goals of future employment in U.S. industrial research and development, academia, and national laboratories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分:非技术摘要安全,可靠的电池对于将来的移动设备和可穿戴电子设备至关重要。锂离子和钠离子电池均可提供高工作电压和大型能量密度,但是当今使用的许多离子传输电解质材料都易燃,如果电池故障,则可能会带来安全危险。一类室温熔融盐(称为离子液体)可以消除可燃性问题,但是在如何促进靶向阳离子(Li+,Na+)的其他离子上的选择性运动仍然存在于电解质中的基本挑战。 。该项目在NSF材料研究部的固态和材料化学计划和聚合物计划的支持下,旨在通过创建与Zwitterionic化学基团覆盖的无机氧化物材料来应对这一挑战。 zwitterionic基团包含相等数量的阳性和负原子,仅少数几个键长的距离隔开,已知与电解质离子以及彼此之间的强烈相互作用。该项目检验了以下假设:Zwitterion装饰的氧化物纳米颗粒网络可以选择性地增强离子液体基电解质中的LI+和Na+转运。该研究为更安全的未来电池电解质的设计提供了必要的见解,并揭示了有关非水,离子密度电解质中zwitterion-ion相互作用的新基本信息。作为该项目的一部分,还开发了新的K-12外展活动。该活动将向大学前学生提供有关未来能源存储技术的信息,将其与本研究的研究结果联系起来,并培养他们从事科学或工程职业的兴趣。第2部分:技术总结该项目的主要目标是选择性地使用有机Zwitterionic(ZI)功能组装饰的二氧化硅纳米结构网络在离子液体电解质中增强LI+和Na+离子的运输。将追求这种独特的材料类别的两种不同的表现:(1)Zi组装饰的氧化物纳米颗粒(Zions)和(2)Zi组官能化的中氧化物氧化物网络(Zwitterionosilicasas)。这项研究的一个关键假设是,在离子液体电解质内组装成连续的三维网络的Zi组功能化的硅纳米结构可以实现选择性碱金属阳离子运输(LI LI+或Na+)的实质性改善。本身,同时还创建了可防止泄漏的强大复合凝胶电解质层。通过在空间上定义Zi群/碱金属阳离子阳离子相互作用的区域,该区域位于Zions或Zwitterionosilicas的裸露表面,可以有效地提出该方法可以有效地最大化ZI单元在这些固有的更安全性内提高LI+/Na+电导率的能力电解质。该项目由NSF材料研究部的固态和材料化学计划和聚合物计划资助,涵盖了Zions和Zwitterionosilicas的合成,具有不同的ZI化学作用以及相关离子运输指标的测量电解质。此外,这项工作为多样化的学生提供了指导的本科生和研究生研究经验,支持他们未来在美国工业研发,学术界和国家实验室中就业的目标。该奖项反映了NSF的法定任务,并被视为值得支持的支持。通过使用基金会的智力优点和更广泛影响的评论标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Panzer其他文献

Matthew Panzer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Panzer', 18)}}的其他基金

Zwitterionic polymer-based electrolyte engineering for alkali metal ion batteries
用于碱金属离子电池的两性离子聚合物电解质工程
  • 批准号:
    2217188
  • 财政年份:
    2022
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
Nonvolatile Gel Electrolytes for Safer Lithium Ion Batteries
用于更安全锂离子电池的非挥发性凝胶电解质
  • 批准号:
    1802729
  • 财政年份:
    2018
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
Solid Ionogel Electrolytes for Flexible Charge Storage Applications
用于灵活电荷存储应用的固体离子凝胶电解质
  • 批准号:
    1201935
  • 财政年份:
    2012
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Continuing Grant

相似国自然基金

环境重金属胁迫对树麻雀装饰色信号诚实性的影响及其分子机制
  • 批准号:
    32370508
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
纤维增强聚合物模内表面装饰注射成型新工艺及其优化调控方法
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
蒙古包装饰元素的文化基因与传承机制研究
  • 批准号:
    52068055
  • 批准年份:
    2020
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
纳米AxMg1-xAl2-yByO4颜料的结构调变与光谱调控--应用于5G智能设备用彩色氧化锆陶瓷
  • 批准号:
    51872093
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
地域建筑中蒙古族建筑装饰图案形态及谱系研究
  • 批准号:
    51808299
  • 批准年份:
    2018
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of Metal Nanoparticle Catalysts Decorated by Inorganic Monolayer Nanosheets and Its Application for Green Chemical Processes
无机单层纳米片修饰金属纳米粒子催化剂的研制及其在绿色化工过程中的应用
  • 批准号:
    23H02005
  • 财政年份:
    2023
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Probing the nanomechanics of single grain boundary with decorated solutes
用修饰溶质探测单晶界的纳米力学
  • 批准号:
    DE200101105
  • 财政年份:
    2022
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Discovery Early Career Researcher Award
Flexible Peptide Decorated Polyaminocarboxylate Ligands for Selective Extraction of Radiotherapeutic Metals for Targeted Alpha Cancer Therapy
用于选择性提取放射治疗金属以用于靶向α癌症治疗的柔性肽修饰的聚氨基羧酸盐配体
  • 批准号:
    2786514
  • 财政年份:
    2022
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Studentship
Cluster Algebras, Quantum Groups, and Decorated Character Varieties
簇代数、量子群和修饰字符簇
  • 批准号:
    2200738
  • 财政年份:
    2022
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
Refinement of DNA-Launched NanoParticles decorated with Apex and CD4bs B cell lineage targeting Envs (DLNP-ACEs)
用 Apex 和 CD4bs B 细胞谱系靶向 Envs (DLNP-ACE) 修饰的 DNA 启动纳米粒子的精制
  • 批准号:
    10589588
  • 财政年份:
    2022
  • 资助金额:
    $ 36.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了