ERI: Exploiting Dynamic Origami for Reconfigurable and Versatile Control of Acoustic Waves

ERI:利用动态折纸实现声波的可重构和多功能控制

基本信息

  • 批准号:
    2137749
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

This Engineering Research Initiation (ERI) grant will fund research that enables increased flexibility in the control of sound propagating through civil infrastructure, mechanical machinery, and aerospace systems, including for applications in acoustic imaging, defect detection, and noise control, thereby promoting the progress of science and advancing the national prosperity and welfare. Acoustic metasurfaces are two-dimensional thin artificial materials that are empowered with extraordinary control over the scattering of sound waves. Until recently, such metasurfaces had fixed configurations that were difficult to tune in real time, thereby limiting their potential use and performance. A recent focus on tunable, reconfigurable, and programmable acoustic metasurfaces promises efficient and smart control of sound waves, but existing solutions suffer from sophisticated tuning mechanisms, use of active elements, and poor efficiency. This project will overcome these limitations by demonstrating new and simple mechanisms for reconfigurable acoustic wave control using flexible structures designed by origami principles, whose folded geometry may be modulated in real time. Although origami principles have been widely used in robotics, soft materials, and flexible electronics, the relationship between dynamic origami and acoustic wave control has been largely unexplored. The knowledge and tools generated by this research will enable the next generation of reconfigurable wave-based devices that are adaptive to changing environments and performance objectives. Activities aiming to engage new generations of students in STEM education and research include outreach programs to K-12 students and extensive planned participation of undergraduate students in team-based technical research projects.This research aims to make fundamental contributions to a practical understanding of how the shape, periodicity, and size of origami structures change dynamically as they undergo deformation and the concomitant impact on acoustic wave propagation. It will achieve this outcome by building a theoretical and computational framework for characterizing and predicting acoustic wave interactions with dynamic origami structures, by developing design strategies that enable application-specific synthesis of dynamic origami structures with target functionalities, and by investigating different tuning mechanisms. Experimental validation and testing will be performed on prototype reconfigurable acoustic metasurfaces that leverage principles of origami highlighted by the theoretical analysis. Such experimental realization will be used to demonstrate wave steering and wave focusing functionalities typical of sensing, communication, imaging, and energy harvesting applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该工程研究启动 (ERI) 拨款将资助能够提高土木基础设施、机械机械和航空航天系统中声音传播控制灵活性的研究,包括声学成像、缺陷检测和噪声控制方面的应用,从而促进进展科学和促进国家繁荣和福祉。声学超表面是二维薄人造材料,能够对声波的散射进行非凡的控制。直到最近,这种超表面具有固定的配置,难以实时调整,从而限制了它们的潜在用途和性能。最近对可调谐、可重构和可编程声学超表面的关注有望实现对声波的高效和智能控制,但现有的解决方案存在复杂的调谐机制、有源元件的使用和效率低下的问题。该项目将通过使用折纸原理设计的柔性结构(其折叠几何形状可以实时调制)展示用于可重构声波控制的新的简单机制来克服这些限制。尽管折纸原理已广泛应用于机器人、软材料和柔性电子领域,但动态折纸和声波控制之间的关系在很大程度上尚未被探索。这项研究产生的知识和工具将使下一代可重构的基于波的设备能够适应不断变化的环境和性能目标。旨在让新一代学生参与 STEM 教育和研究的活动包括针对 K-12 学生的推广计划以及本科生广泛有计划地参与基于团队的技术研究项目。这项研究旨在为实际了解折纸结构的形状、周期性和尺寸随着变形以及随之而来的对声波传播的影响而动态变化。它将通过建立一个理论和计算框架来表征和预测声波与动态折纸结构的相互作用,通过开发能够实现具有目标功能的动态折纸结构的特定应用合成的设计策略,以及通过研究不同的调谐机制来实现这一成果。实验验证和测试将在原型可重构声学超表面上进行,利用理论分析强调的折纸原理。此类实验实现将用于演示传感、通信、成像和能量收集应用中典型的波转向和波聚焦功能。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mitigating Inaudible Ultrasound Attacks on Voice Assistants With Acoustic Metamaterials
利用声学超材料减轻对语音助手的听不见的超声波攻击
  • DOI:
    10.1109/access.2023.3266722
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    J. S. Lloyd;Cole G. Ludwikowski;Cyrus Malik;Chen Shen
  • 通讯作者:
    Chen Shen
Non-Hermitian planar elastic metasurface for unidirectional focusing of flexural waves
用于弯曲波单向聚焦的非厄米平面弹性超表面
  • DOI:
    10.1063/5.0097177
  • 发表时间:
    2022-06-13
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Katerina Stojanoska;Chen Shen
  • 通讯作者:
    Chen Shen
Experimental demonstration of rainbow trapping of elastic waves in two-dimensional axisymmetric phononic crystal plates
二维轴对称声子晶体板中弹性波彩虹捕获的实验演示
  • DOI:
    10.1121/10.0025179
  • 发表时间:
    2024-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ellouzi, Chadi;Zabihi, Ali;Gormley, Louis;Aghdasi, Farhood;Stojanoska, Katerina;Miri, Amir;Jha, Ratneshwar;Shen, Chen
  • 通讯作者:
    Shen, Chen
Selectively exciting quasibound states in the continuum in open microwave resonators using dielectric scatters
使用介电散射选择性地激发开放式微波谐振器连续谱中的准束缚态
  • DOI:
    10.1103/physrevb.107.184309
  • 发表时间:
    2023-05-22
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Olugbenga Gbidi;Chen Shen
  • 通讯作者:
    Chen Shen
Tunable, reconfigurable, and programmable acoustic metasurfaces: A review
可调谐、可重构和可编程声学超表面:综述
  • DOI:
    10.3389/fmats.2023.1132585
  • 发表时间:
    2023-03-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Zabihi;Chadi Ellouzi;Chen Shen
  • 通讯作者:
    Chen Shen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chen Shen其他文献

A fault detection scheme for PV panels in large scale PV stations with complex installation conditions
安装条件复杂的大型光伏电站光伏板故障检测方案
  • DOI:
  • 发表时间:
    2021-05-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qian Cao;Chen Shen;Mengshuo Jia
  • 通讯作者:
    Mengshuo Jia
Visual-Olfactory Synergistic Perception Based on Dual-Focus Imaging and a Bionic Learning Architecture.
基于双焦点成像和仿生学习架构的视觉嗅觉协同感知。
  • DOI:
    10.1021/acssensors.2c01721
  • 发表时间:
    2022-12-27
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Yaoxuan Cui;Xubin Zheng;Chen Shen;Libin Qian;Hao Dong;Qingjun Liu;Xing Chen;Qing Yang;Fenni Zhang;Di Wang
  • 通讯作者:
    Di Wang
Sesquiterpenoids from the Leaves of Dalbergia odorifera
降香黄檀叶中的倍半萜类化合物
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Shen;C. Ouyang;Ying Zhang;Qing Zhu;Ronghua Liu;Lanying Chen
  • 通讯作者:
    Lanying Chen
A radiomics-boosted deep-learning for risk assessment of synchronous peritoneal metastasis in colorectal cancer
放射组学增强的深度学习用于结直肠癌同步腹膜转移的风险评估
  • DOI:
    10.1186/s13244-024-01733-5
  • 发表时间:
    2024-06-18
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Ding Zhang;BingShu Zheng;LiuWei Xu;YiCong Wu;Chen Shen;ShanLei Bao;ZhongHua Tan;Sun
  • 通讯作者:
    Sun
Method for detecting harmonic responsibility misjudgements based on waveform correlation analysis
基于波形相关分析的谐波责任误判检测方法

Chen Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chen Shen', 18)}}的其他基金

CAREER: Toward Smart Surface Acoustic Wave Devices with Gate-Tunability
职业:开发具有栅极可调谐性的智能表面声波器件
  • 批准号:
    2337069
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mimicking Stress-Mediated Invasive Solid Tumor Using Bioprinted Microtissue and Acoustofluidics
合作研究:利用生物打印微组织和声流控技术模拟压力介导的侵袭性实体瘤
  • 批准号:
    2243507
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似海外基金

Exploiting High Repetition Rate Experiments In Dynamic High-Pressure Physics.
在动态高压物理中利用高重复率实验。
  • 批准号:
    2742114
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Integration of few layer graphene (FLG) composites into high-sensitive dynamic photodetectors and sensors exploiting fluctuational transport
将少层石墨烯 (FLG) 复合材料集成到利用波动传输的高灵敏度动态光电探测器和传感器中
  • 批准号:
    561065-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Alliance Grants
Integration of few layer graphene (FLG) composites into high-sensitive dynamic photodetectors and sensors exploiting fluctuational transport
将少层石墨烯 (FLG) 复合材料集成到利用波动传输的高灵敏度动态光电探测器和传感器中
  • 批准号:
    561065-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Alliance Grants
CAREER: Autonomous Live Sketching of Dynamic Environments by Exploiting Spatiotemporal Variations
职业:利用时空变化自主实时绘制动态环境草图
  • 批准号:
    2047169
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
A Dynamic Scheduler for Health Care Resources in the Emergency Department of TBRHSC on exploiting Machine Learning during Diverse Situations of COVID-19 Pandemic.
TBRHSC 急诊科医疗保健资源动态调度程序,在 COVID-19 大流行的不同情况下利用机器学习。
  • 批准号:
    554162-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了