LEAPS MPS: Surface subgroups of outer automorphism group of the free group and dynamics on the boundary

LEAPS MPS:自由群外自同构群的表面子群和边界动力学

基本信息

  • 批准号:
    2137611
  • 负责人:
  • 金额:
    $ 16.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). This project aims to achieve a better understanding of the geometry of surfaces, graphs, and groups via their interactions with each other. The geometry of a surface is similar to the topographical map of a region. In this setting, many practical problems, such as the optimal transport of goods, require an understanding of how the roads in the region are connected. Mathematically, a road corresponds to a curve on the surface and the list of all of the roads and their intersections corresponds to a graph. The project involves understanding surfaces (regions) through their curves (roads) by recording how one curve is connected to another (building a graph or a simplicial complex). Some of the questions that arise include: is it enough to study only the outskirts of the region (boundaries of simplicial complexes) and can one get to the boundary from downtown (by iterating a point under a group element)? In this approach, a combinatorial object such as a simplicial complex relates curves with each other, and an algebraic tool, a group moves them around the surface. This approach can resolve many of the problems related to surfaces. In this project, the investigator will include undergraduate and graduate students and will collaborate with faculty from other departments. Moreover, some visual aspects of the work will be integrated into the investigator’s outreach project which will involve middle school students from under-represented groups in the mathematical sciences.The simplest groups are the free groups and the surface groups (the fundamental groups of surfaces). For many decades, these types of subgroups have been used to understand the structure of larger groups. This project includes two research directions. The first focuses on understanding the subgroup structure of the outer automorphism group of the free group via dynamics on the boundaries of some simplicial complexes. To this end, techniques from the study of Kleinian groups and mapping class groups will be used; for example, the existence and construction of certain Cannon–Thurston maps are proposed. The second project involves the explicit construction of surface subgroups of the outer automorphism group of the free group which include certain type of automorphisms, called iwips, which are of dynamical importance. The novelty of investigator’s research is the introduction of the topology of a certain 3--manifold to understand the free group and its group of outer automorphisms. This approach aims at translating between dynamical and topological tools to resolve some of the long standing problems in geometric topology and geometric group theory such as Gromov’s “ hyperbolization” conjecture. The project also includes training of students and the establishment of a 6 week summer program in mathematics for middle school students drawn from underrepresented communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由《2021 年美国救援计划法案》(公法 117-2)资助。该项目旨在通过表面、图形和群体之间的相互作用更好地理解它们的几何形状。表面的几何形状类似于一个区域的地形图,在这种情况下,许多实际问题(例如货物的最佳运输)需要了解该区域的道路在数学上是如何连接的。一个曲面上的曲线以及所有道路及其交叉点的列表对应于一个图形。该项目涉及通过记录一条曲线如何连接到另一条曲线(构建图形或单纯形)来通过曲线(道路)来理解曲面(区域)。出现的一些问题包括:仅研究该区域的郊区(单纯复形的边界)是否足够?可以从市中心到达边界(通过迭代群元素下的一个点)吗?在这种方法中,组合对象(例如单纯复形)将曲线相互关联,并且使用代数工具,组在曲面上移动它们。在该项目中,研究人员将解决许多与曲面相关的问题。包括本科生和研究生,并将与其他院系的教师合作。此外,这项工作的一些视觉方面将被纳入研究者的外展项目中,该项目将涉及数学科学领域代表性不足的中学生。最简单的群体是这几十年来,这些类型的子群一直被用来理解更大的群的结构,第一个重点是理解子群的结构。为此,将使用克莱因群和映射类群研究中的技术,例如某些坎农-瑟斯顿映射的存在和构造。提出了第二个。该项目涉及自由群外自同构群的表面子群的显式构造,其中包括某种类型的自同构,称为 iwips,其具有动力学重要性,研究者研究的新颖之处在于引入了某种 3-- 的拓扑。这种方法旨在在动力学和拓扑工具之间进行转换,以解决几何拓扑和几何群论中一些长期存在的问题,例如格罗莫夫的“夸张化”猜想还包括对学生进行培训,并为来自代表性不足的社区的中学生设立为期 6 周的数学暑期课程。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Funda Gultepe其他文献

The coarse geometry of hexagon decomposition graphs
六边形分解图的粗略几何
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Funda Gultepe;H. Parlier
  • 通讯作者:
    H. Parlier
Geometry of extensions of free groups via automorphisms with fixed points on the complex of free factors
通过自由因子复形上带有不动点的自同构的自由群扩张的几何
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pritam Ghosh;Funda Gultepe
  • 通讯作者:
    Funda Gultepe
An arc graph distance formula for the flip graph
翻转图的弧线图距离公式
  • DOI:
    10.1090/proc/13451
  • 发表时间:
    2015-11-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Funda Gultepe;C. Leininger
  • 通讯作者:
    C. Leininger

Funda Gultepe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

PS-MPs环境暴露干扰甲状腺—棕色脂肪对话引发糖脂代谢紊乱的作用及机制研究
  • 批准号:
    82370847
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
融合MPS与GAN的复杂地质结构三维重建方法研究
  • 批准号:
    42372341
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
Mps1磷酸化RPA2增强ATR介导的DNA损伤修复促进高级别浆液性卵巢癌PARP抑制剂耐药的机制研究
  • 批准号:
    82303896
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高效求解破损船舶运动问题的势流-MPS耦合数值方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
HIF-1α介导SOX17抑制纺锤体装配检查点相关基因Mps1调控滋养细胞功能的机制研究
  • 批准号:
    82101760
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Gene Therapy that Systemically Produces Brain-penetrating Replacement Enzyme for MPS IIIA (Sanfilippo A Syndrome)
系统性产生 MPS IIIA(桑菲利波 A 综合征)的脑穿透替代酶的基因疗法
  • 批准号:
    10760336
  • 财政年份:
    2023
  • 资助金额:
    $ 16.56万
  • 项目类别:
LEAPS-MPS: Unraveling the Surface Effects on Tungsten-Based Plasma-Facing Materials Through First-Principles Calculations
LEAPS-MPS:通过第一性原理计算揭示钨基等离子体表面材料的表面效应
  • 批准号:
    2213272
  • 财政年份:
    2022
  • 资助金额:
    $ 16.56万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Dispersive Coupling of Light to Surface Plasmons for Biosensing
LEAPS-MPS:用于生物传感的光与表面等离子体的色散耦合
  • 批准号:
    2137952
  • 财政年份:
    2022
  • 资助金额:
    $ 16.56万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Surface Morphological Effect on Biomolecular Attachment to Responsive Microgels for Tunable Biomimetic 3D-Cell Culture Scaffolds
LEAPS-MPS:表面形态对可调仿生 3D 细胞培养支架的响应性微凝胶生物分子附着的影响
  • 批准号:
    2137578
  • 财政年份:
    2022
  • 资助金额:
    $ 16.56万
  • 项目类别:
    Standard Grant
Populating MPS database with data from multi-organ, human-on-a-chip microphysiological systems
用来自多器官、人体芯片微生理系统的数据填充 MPS 数据库
  • 批准号:
    10435269
  • 财政年份:
    2021
  • 资助金额:
    $ 16.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了