Nonequilibrium Dynamics and Site-Resolved Imaging in a Three-Dimensional Spinor Bose-Hubbard Model Quantum Simulator

三维旋量玻色-哈伯德模型量子模拟器中的非平衡动力学和位点分辨成像

基本信息

  • 批准号:
    2207777
  • 负责人:
  • 金额:
    $ 39.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Physical modeling of three-dimensional (3D) strongly correlated many-body systems such as superconductors is a fast-moving research frontier with immediate applications spanning areas from the development of novel materials to quantum state preparation. Classical computers - even fast supercomputers - cannot perform accurate simulations/studies of these systems due to the intrinsic complexity of the systems and the limitations of existing numerical techniques. This project will implement a 3D highly-programmable quantum simulator using a sodium Bose-Einstein condensate (BEC) and experimentally demonstrate that this quantum simulator can be more powerful than its classical counterpart in studying such intricate many-body systems. BECs are ultra-cold gases in which atoms become essentially indistinguishable from one another, allowing for observations of quantum behaviors at a macroscopic level. Research goals of this project are both of fundamental interest for advancing our understanding on quantum physics and of technological significance. The principal investigator (PI) will integrate research and teaching by involving undergraduate and graduate students into research projects, and endeavor to broaden the participation of under-represented groups including Native American students and women in physics. The PI will also organize one-day workshops for local high school students to get hands-on experience with state-of-the-art quantum physics equipment and techniques. This project will encourage more students to pursue a career in science and technology. This project will perform experimental studies on many-body systems in a 3D spinor Bose-Hubbard model quantum simulator consisting of an antiferromagnetic sodium spinor BEC confined in an optical lattice. Possessing spin degrees of freedom and exhibiting magnetic order and superfluidity, this quantum simulator is highly programmable with a remarkable degree of control over many parameters, such as temperature, spin, density, and dimensionality. The experimental studies include investigating out-of-equilibrium spin and spatial dynamics and non-exponential tunneling with spinor BECs in moving/driven lattices and achieving site-resolved spatial resolution via a quantum gas magnifier imaging technique to directly detect spatial distributions of 3D quantum systems and explore previously inaccessible microscopic regimes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
三维(3D)的物理建模密切相关的多体系统(例如超导体)是一个快速移动的研究边界,其直接应用跨越了从新型材料到量子状态制备的领域。由于系统的内在复杂性和现有数值技术的局限性,经典计算机 - 甚至快速超级计算机都无法对这些系统进行准确的模拟/研究。该项目将使用钠粉状凝结物(BEC)实施3D高度可编程的量子模拟器,并在实验上证明,该量子模拟器在研究此类复杂的多体系统方面可以比其经典的量子同步物更强大。 BEC是超冷气体,原子本质上是无法区分的,可以在宏观层面上观察量子行为。该项目的研究目标既是提高我们对量子物理学的理解和技术意义的基本兴趣。首席研究员(PI)将通过将大学和研究生参与研究项目来整合研究和教学,并努力扩大包括美国原住民学生和物理学中包括美国原住民学生和女性在内的代表性不足的群体的参与。 PI还将组织为期一日的研讨会,以便当地高中生获得最先进的量子物理设备和技术的动手经验。该项目将鼓励更多的学生从事科学技术职业。 该项目将对3D旋转玻色胶模型量子模拟器中的多体系统进行实验研究,该模拟器由限制在光学晶格中的抗磁磁性钠旋转器BEC组成。该量子模拟器具有自由度的自由度,表现出磁性和超流量,可以高度编程,对许多参数(例如温度,自旋,密度和尺寸)具有显着的控制。实验研究包括在移动/驱动的晶格中调查与旋转器BEC的非平衡外旋转和空间动力学以及非指数隧穿,并通过量子气体放大器成像技术实现现场分辨的空间分辨率,以直接检测3D量子系统的空间分布并探讨了以前无法访问的微观制度。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响标准,被视为值得通过评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quench-induced nonequilibrium dynamics of spinor gases in a moving lattice
  • DOI:
    10.1103/physreva.107.053311
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Z. N. Hardesty-Shaw;Q. Guan;J. Austin;D. Blume;R. J. Lewis-Swan;Y. Liu
  • 通讯作者:
    Z. N. Hardesty-Shaw;Q. Guan;J. Austin;D. Blume;R. J. Lewis-Swan;Y. Liu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingmei Liu其他文献

Engineering dynamical phase diagrams with driven lattices in spinor gases
旋量气体中驱动晶格的工程动力学相图
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    J. O. Austin;Z. N. Hardesty;Qingze Guan;C. Binegar;Doerte Blume;R. J. Lewis;Yingmei Liu
  • 通讯作者:
    Yingmei Liu
Detecting topological phase transitions in a double kicked quantum rotor
检测双踢量子转子中的拓扑相变
  • DOI:
    10.1103/physreva.106.043318
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Nikolai Bolik;C. Groiseau;J. Clark;G. Summy;Yingmei Liu;S. Wimberger
  • 通讯作者:
    S. Wimberger
Temperature dependence of exciton Auger decay process in cuprous oxide
氧化亚铜中激子俄歇衰变过程的温度依赖性
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingmei Liu;D. Snoke
  • 通讯作者:
    D. Snoke
EXCITONS AT HIGH DENSITY IN CUPROUS OXIDE AND COUPLED QUANTUM WELLS
氧化亚铜和耦合量子阱中高密度激子
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingmei Liu
  • 通讯作者:
    Yingmei Liu
‘To study is not to create something but to create oneself’: an ontological turn in translator education and training
“学习不是创造什么,而是创造自己”:翻译教育培训的本体论转向

Yingmei Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingmei Liu', 18)}}的其他基金

Novel Quantum Phase Transitions and Non-Equilibrium Dynamics in Lattice-Confined Spinor Condensates
晶格限制旋量凝聚中的新型量子相变和非平衡动力学
  • 批准号:
    1912575
  • 财政年份:
    2019
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Continuing Grant
CAREER: Sodium Spinor Condensates and Their Applications in Quantum Information Science
职业:钠自旋凝聚体及其在量子信息科学中的应用
  • 批准号:
    1352168
  • 财政年份:
    2014
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Continuing Grant

相似国自然基金

斯格明子在无序杂质和纳米缺陷中的动力学相变与非平衡态输运研究
  • 批准号:
    12305053
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非线性模型结构性误差的动力学订正方法研究
  • 批准号:
    42375059
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
有机磷光纳米闪烁体用于X射线光动力学治疗
  • 批准号:
    22371123
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
抑制RUVBL1/2复合体逆转HnRNPA2B1-SG水凝胶相变阻断老年MCI大鼠术后神经认知恢复延迟动力学机制研究
  • 批准号:
    82371205
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
α-Fe2O3光电极温度依赖的载流子传输与表面反应动力学研究
  • 批准号:
    22309080
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
  • 批准号:
    2243955
  • 财政年份:
    2024
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Methane Dynamics Described Through the Fusion of Site and Satellite Data in Bottomland Hardwood Forested and Non-forested Wetlands
RII Track-4:@NASA:通过融合洼地硬木森林和非森林湿地的现场和卫星数据描述甲烷动力学
  • 批准号:
    2327374
  • 财政年份:
    2024
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Standard Grant
Investigating FGF Signaling Dynamics in migrating cells
研究迁移细胞中的 FGF 信号动力学
  • 批准号:
    10679898
  • 财政年份:
    2024
  • 资助金额:
    $ 39.48万
  • 项目类别:
Application of New Tools for Probing the Roles of Sphingolipids and Cholesterol in Influenza Virus Infection
应用新工具探索鞘脂和胆固醇在流感病毒感染中的作用
  • 批准号:
    10678459
  • 财政年份:
    2023
  • 资助金额:
    $ 39.48万
  • 项目类别:
Dynamics of HDV RNA Synthesis
HDV RNA 合成动力学
  • 批准号:
    10646632
  • 财政年份:
    2023
  • 资助金额:
    $ 39.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了