CAS: Hard Permanent Magnets Through Molecular Design
CAS:通过分子设计实现硬质永磁体
基本信息
- 批准号:2206534
- 负责人:
- 金额:$ 57.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARYMagnetism is a scientific concept that penetrates society in myriad aspects of daily life, from the magnets in electric motors, to portable electronics, to scanners for diagnostic medical imaging. With this project, supported by the Solid State and Materials Chemistry Program in NSF’s Division of Materials Research, researchers at the University of California (UC) Berkeley create new magnetic materials whose design is tailored at the atomic level. The research significantly advances our knowledge and understanding of permanent magnet materials, in particular how to synthesize them through molecular design principles. The research could be transformative in that it offers the potential to inform the design and manufacture of new magnets with superior properties relative to the current state-of-the-art. At a more fundamental level, the research has significant impact in the areas of magnetic materials, materials chemistry, and metal–organic frameworks. In addition, many researchers engaged in the disciplines of condensed matter physics, conductive materials, and quantum information science can also benefit from the new insights gained by the research. Beyond these scientific benefits, this project broadly expand its impact by creating educational opportunities for the general public, specifically through the production of educational outreach program branching off an existing collaboration, where graduate students from UC Berkeley produce lessons on magnetic materials for Bay Area elementary school students. This outreach program is intended to reach large numbers of K-12 students that constitute diverse backgrounds.PART 2: TECHNICAL SUMMARYAs part of this project, supported by the Solid State and Materials Chemistry Program in NSF’s Division of Materials Research, researchers at UC Berkeley test the hypothesis that the design principles governing magnetic anisotropy in molecules can inform the design of ultrahard permanent magnet materials. Specifically, work from many research groups over the past two decades has uncovered how coordination chemistry can be applied to tailor geometric and electronic structures of molecules with atomic precision, to maximize the single-ion magnetic anisotropy—the fundamental source of the strength, or “hardness”, of a permanent magnet. This project employs these design principles to incorporate selected classes of high-anisotropy molecules—in particular high-performance single-molecule magnets—into metal–organic framework materials. Both transition metal- and lanthanide (Ln)-based molecular building units are pursued, falling into four main classes: (i) mixed-valence Ln2X3 cores with immense coercivity, (ii) low-valent lanthanide complexes with populated 5d orbitals, (iii) two- and three-coordinate transition metal complexes, and (iv) trigonal paddlewheel complexes. To install strong coupling interactions between these high-anisotropy nodes, two synthetic strategies are utilized: (i) high-energy organic linker-based spins and (ii) electron delocalization in mixed-valence materials. The students and postdoctoral researchers who carry out this research receive training in the synthesis of and characterization of framework materials, including sophisticated physical methods such as magnetometry, x-ray diffraction, and Mössbauer spectroscopy. Moreover, these researchers regularly interact with collaborators in other research groups, both at Berkeley and other institutions. This collaborative culture fosters an open and inclusive forum for scientific advancement, and aids in the professional development and teamwork skills of the involved researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分:非技术摘要是一种科学概念,它在日常生活的无数方面渗透到社会,从电动机的磁铁到便携式电子设备,再到用于诊断医学成像的扫描仪。在NSF材料研究部的固态和材料化学计划的支持下,加利福尼亚大学伯克利分校的研究人员创造了新的磁性材料,其设计是在原子水平量身定制的,因此在该项目的支持下。这项研究可以显着提高我们对永久磁铁材料的知识和理解,特别是如何通过分子设计原理综合它们。这项研究可能具有变革性,因为它具有相对于当前最新面积的新磁体的设计和制造的潜力。从更基本的角度来看,该研究对磁性区域产生了重大影响。材料,材料化学和金属和有机框架。此外,许多研究人员从事凝结材料物理,导电材料和量子信息科学学科的学科也可以从研究获得的新见解中受益。除了这些科学的好处之外,该项目还通过为公众创造教育机会,特别是通过生产教育外展计划来扩大其影响,从而在现有合作的情况下进行了教育外展计划,该计划的研究生在该计划中,来自加州大学伯克利分校的研究生为湾区小学生提供磁性材料课程。该外展计划旨在吸引大量构成潜水背景的K-12学生。第2部分:该项目的技术摘要部分,在NSF材料研究部的固态和材料化学计划的支持下,UC Berkeley的研究人员测试了一个假设,即在分子中使用磁性的磁性材料的设计原理可以告知Olterahard Maternet of Desigrahard Magnet材料。具体而言,在过去的二十年中,许多研究小组的工作都发现了如何将协调化学应用于具有原子精度的分子的量身定制的几何和电子结构,以最大化单离子磁各向异性,即永久磁铁的强度或“硬度”的基本来源。该项目采用这些设计原理来纳入选定的高肛门分子类别(尤其是高性能的单分子磁铁),即金属 - 有机框架材料。过渡金属和灯笼(LN)的分子建筑单元均被追捕,分为四个主要类别:(i)具有极大矫正的混合价LN2X3核,(ii)低价值的灯笼型灯笼,具有填充的5D轨道型(III)(III)的两种配位金属复合物和(IIV)。为了在这些高瞬间节点之间安装较强的耦合相互作用,利用了两种合成策略:(i)混合价值材料中的高能有机连接器的自旋和(ii)电子离域化。进行这项研究的学生和博士后研究人员接受了框架材料合成和表征的培训,包括磁力测定法,X射线衍射和Mössbauer光谱等复杂的物理方法。此外,这些研究人员定期与伯克利和其他机构的其他研究小组中的合作者进行互动。这种协作文化促进了一个开放且包容性的科学发展论坛,并帮助参与研究人员的专业发展和团队合作技能。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子的智力优点和更广泛的影响来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Long其他文献
Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past, by David Reich
我们是谁以及我们如何来到这里:古代 DNA 和人类过去的新科学,作者:David Reich
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jeffrey Long - 通讯作者:
Jeffrey Long
God’s characteristics as reported by near-death experiencers
濒死体验者所报告的上帝特征
- DOI:
10.32388/2ti1t7 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Patrizio E. Tressoldi;Jeffrey Long - 通讯作者:
Jeffrey Long
Administration of the steroid marinobufagenin (MBG) mimics Salt-Sensitive hypertension in Dahl-S, but not in normotensive Sprague-Dawley rats
- DOI:
10.1016/j.jash.2016.03.025 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Olga V. Fedorova;Yulia N. Grigorova;Mikayla L. Hall;Ondrej Juhasz;Wen Wei;Natalia Petrashevskaya;Valentina I. Zernetkina;Jeffrey Long;Kenneth W. Fishbein;Peter R. Rapp;Richard G. Spencer;Edward G. Lakatta;Alexei Y. Bagrov - 通讯作者:
Alexei Y. Bagrov
Association of blood pressure and na-pump inhibitor marinobufagenin (MBG) with brain structure, assessed by <em>in vivo</em> MRI in Sprague-Dawley and Dahl-S Rats
- DOI:
10.1016/j.jash.2016.03.145 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Olga V. Fedorova;Mikayla L. Hall;Kenneth W. Fishbein;Yulia N. Grigovora;Mustafa Bouhrara;Wen Wei;Jeffrey Long;Christopher A. Morrell;Peter P. Rapp;Edward G. Lakatta;Richard G. Spencer;Alexei Y. Bagrov - 通讯作者:
Alexei Y. Bagrov
Jeffrey Long的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Long', 18)}}的其他基金
A Coordination Chemistry Approach to the Synthesis of Single-Molecule Magnets
合成单分子磁体的配位化学方法
- 批准号:
2350466 - 财政年份:2024
- 资助金额:
$ 57.7万 - 项目类别:
Continuing Grant
A Coordination Chemistry Approach to the Synthesis of Single- Molecule Magnets
合成单分子磁体的配位化学方法
- 批准号:
2102603 - 财政年份:2021
- 资助金额:
$ 57.7万 - 项目类别:
Continuing Grant
A Coordination Chemistry Approach to the Synthesis of Single-Molecule Magnets
合成单分子磁体的配位化学方法
- 批准号:
1800252 - 财政年份:2018
- 资助金额:
$ 57.7万 - 项目类别:
Continuing Grant
A Coordination Chemistry Approach to the Synthesis of Single-Molecule Magnets
合成单分子磁体的配位化学方法
- 批准号:
1464841 - 财政年份:2015
- 资助金额:
$ 57.7万 - 项目类别:
Standard Grant
Repression Mediated Embryonic Paterning in Arabidopsis
拟南芥中抑制介导的胚胎模式
- 批准号:
1457381 - 财政年份:2015
- 资助金额:
$ 57.7万 - 项目类别:
Continuing Grant
I-Corps: The Commercialization Potential of Pyrazolate Metal-Organic Frameworks (MOFs)
I-Corps:吡唑盐金属有机框架(MOF)的商业化潜力
- 批准号:
1508127 - 财政年份:2014
- 资助金额:
$ 57.7万 - 项目类别:
Standard Grant
A Coordination Chemistry Approach to the Synthesis of Single-Molecule Magnets
合成单分子磁体的配位化学方法
- 批准号:
1111900 - 财政年份:2011
- 资助金额:
$ 57.7万 - 项目类别:
Standard Grant
Pattern and Process in Human DNA Sequence Variation
人类 DNA 序列变异的模式和过程
- 批准号:
0850997 - 财政年份:2009
- 资助金额:
$ 57.7万 - 项目类别:
Standard Grant
相似国自然基金
面向NP难问题多种求解算法的皇冠分解技术研究
- 批准号:62372066
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
褐煤基接枝共聚物的定向设计及其对煤气化废水难降解组分的吸附机理研究
- 批准号:22308197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
难溶性1,3-丁二炔基共轭聚合物薄膜的电化学制备及热电性能研究
- 批准号:22371287
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
锰氧化藻-菌颗粒形成机制及去除难降解有机药物的效能与机理
- 批准号:52300032
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
烧结钕铁硼基材晶界性质与重稀土沿难磁化方向扩散行为的关联机制
- 批准号:52371188
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
The impact of auditory access on the development of speech perception
听觉访问对言语感知发展的影响
- 批准号:
10677429 - 财政年份:2023
- 资助金额:
$ 57.7万 - 项目类别:
Factors associated with reading comprehension in adolescents who are hard of hearing
听力障碍青少年阅读理解能力的相关因素
- 批准号:
10439914 - 财政年份:2021
- 资助金额:
$ 57.7万 - 项目类别:
Factors associated with reading comprehension in adolescents who are hard of hearing
听力障碍青少年阅读理解能力的相关因素
- 批准号:
10295831 - 财政年份:2021
- 资助金额:
$ 57.7万 - 项目类别:
Factors associated with reading comprehension in adolescents who are hard of hearing
听力障碍青少年阅读理解能力的相关因素
- 批准号:
10645106 - 财政年份:2021
- 资助金额:
$ 57.7万 - 项目类别:
Developing a Biomarker for Infant Speech Perception in Children with Hearing Loss
开发听力损失儿童婴儿言语感知的生物标志物
- 批准号:
10114893 - 财政年份:2015
- 资助金额:
$ 57.7万 - 项目类别: