Collaborative Research: Optimized Testing Strategies for Fighting Pandemics: Fundamental Limits and Efficient Algorithms
合作研究:抗击流行病的优化测试策略:基本限制和高效算法
基本信息
- 批准号:2133170
- 负责人:
- 金额:$ 27.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Large-scale high-throughput prevalence and diagnostic testing is essential for the containment and mitigation of pandemics. The testing bottleneck in the COVID-19 pandemic has led to a resurgence of interest in group testing, where several people's biological samples are mixed together and examined in a single test. When the rate of infection in the population is low, this method can significantly reduce the total number of tests per subject and increase the throughput of the existing testing infrastructure. However, traditional group testing has the following limitations: First, efficient group testing based methods for the estimation of prevalence have been largely overlooked in the literature. Second, traditional group testing usually assumes that the testing results are qualitative (positive versus negative), not quantitative (providing viral load information). Third, the theoretical study of group testing rarely takes practical constraints, such as the sensitivity of the pooled tests and the dilution effect, into consideration, which hinders the applicability of the testing schemes in practice. The goal of this project is to overcome these limitations of traditional group testing and design advanced pooled testing strategies for efficient prevalence tracking and accurate infection diagnosis. It will develop optimized pooled testing strategies with strong theoretical performance guarantees yet feasible and cost-effective in practice.The proposed research is organized in three research thrusts as follows. Thrust 1 aims to design effective sampling and testing algorithms to estimate the prevalence in communities and track its evolution, under scarce testing resource constraints. Thrust 2 focuses on the design of optimized pooling and decoding algorithms for compressed sensing based (COVID-19) virus diagnostic testing. Thrust 3 validates the accuracy and efficiency of the proposed pooled testing through experiments on anonymized COVID-19 samples. This project bridges group testing and online learning, the two largely disconnected areas, with the objective to effectively allocate limited testing resources for efficient prevalence tracking. Such integration leads to novel sampling strategies, broadens the paradigm of group testing, and advances the state of the art of online learning. Moreover, the proposed compressed sensing based diagnostic testing leverages quantitative measurements provided by advanced testing technologies, which can significantly increase test throughput, reduce the number of needed tests, decrease the consumption of scarce reagents, and provide results robust against observation noises and outliers. The rich compressed sensing theory provides possible approaches to the rigorous mathematical certification of the correctness of the decoded results. Besides, the clinical constraints on pooled testing also lead to novel problem formulation and theoretical characterization, enriching the study of compressed sensing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模高通量流行和诊断测试对于遏制和缓解流行病至关重要。 COVID-19 大流行中的检测瓶颈导致人们重新燃起对团体检测的兴趣,即将几个人的生物样本混合在一起并在一次测试中进行检查。当人群感染率较低时,这种方法可以显着减少每个受试者的测试总数,并提高现有测试基础设施的吞吐量。然而,传统的群体测试具有以下局限性:首先,文献中很大程度上忽视了基于有效群体测试的患病率估计方法。其次,传统的群体测试通常假设测试结果是定性的(阳性与阴性),而不是定量的(提供病毒载量信息)。第三,群体测试的理论研究很少考虑实际约束,例如合并测试的敏感性和稀释效应,这阻碍了测试方案在实践中的适用性。该项目的目标是克服传统群体检测的这些局限性,并设计先进的汇总检测策略,以实现高效的患病率跟踪和准确的感染诊断。它将开发具有强大理论性能保证但在实践中可行且具有成本效益的优化汇总测试策略。拟议的研究分为以下三个研究重点。主旨 1 旨在设计有效的采样和测试算法,以在测试资源有限的情况下估计社区中的患病率并跟踪其演变。 Thrust 2 专注于基于压缩感知 (COVID-19) 病毒诊断测试的优化池和解码算法的设计。 Thrust 3 通过对匿名 COVID-19 样本进行实验,验证了所提议的汇总测试的准确性和效率。该项目将团体检测和在线学习这两个基本上互不相关的领域联系起来,目的是有效分配有限的检测资源,以实现高效的患病率追踪。这种集成带来了新颖的抽样策略,拓宽了小组测试的范式,并推进了在线学习的最新技术。此外,所提出的基于压缩传感的诊断测试利用先进测试技术提供的定量测量,可以显着提高测试吞吐量,减少所需测试的数量,减少稀缺试剂的消耗,并提供针对观察噪声和异常值的稳健结果。丰富的压缩感知理论为对解码结果的正确性进行严格的数学证明提供了可能的方法。此外,汇集测试的临床限制也导致了新的问题表述和理论表征,丰富了压缩传感的研究。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Federated Linear Contextual Bandits with User-level Differential Privacy
具有用户级差分隐私的联合线性上下文强盗
- DOI:
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Huang, R.;Zhang, H.;Melis, L.;Shen, M.;Hejazinia, M.;Yang, J.
- 通讯作者:Yang, J.
Exploiting Feature Heterogeneity for Improved Generalization in Federated Multi-task Learning
利用特征异构性提高联邦多任务学习的泛化能力
- DOI:
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Liu, R.;Shen, C.;Yang, J.
- 通讯作者:Yang, J.
Provably Efficient Offline Reinforcement Learning with Perturbed Data Sources
使用扰动数据源进行可证明高效的离线强化学习
- DOI:
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Shi, C.;Xiong, W.;Shen, C.;Yang, J.
- 通讯作者:Yang, J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Yang其他文献
Linear parameter variant modeling and parameter identification of a cable-driven micromanipulator for surgical robot
手术机器人电缆驱动微操作器的线性参数变量建模与参数识别
- DOI:
10.1177/0954406218773780 - 发表时间:
2019-03-01 - 期刊:
- 影响因子:0
- 作者:
Wenjie Wang;Lingtao Yu;Jing Yang - 通讯作者:
Jing Yang
Interaction of age and CYP2C19 genotypes on voriconazole steady-state trough concentration in Chinese patients.
中国患者年龄和 CYP2C19 基因型对伏立康唑稳态谷浓度的相互作用。
- DOI:
10.1097/fpc.0000000000000536 - 发表时间:
2024-05-15 - 期刊:
- 影响因子:2.6
- 作者:
Yin;Ying;Liang Li;Jing Yang;Xiao - 通讯作者:
Xiao
Antitumor and immunoregulatory effects of astragalus on nasopharyngeal carcinoma In Vivo and In Vitro
黄芪对鼻咽癌体内外抗肿瘤及免疫调节作用
- DOI:
10.1002/ptr.3354 - 发表时间:
2011-06-01 - 期刊:
- 影响因子:7.2
- 作者:
Yan Song;Jing Yang;W. Bai;W. Ji - 通讯作者:
W. Ji
Reproductive outcomes in women with prior cesarean section undergoing in vitro fertilization: A retrospective case-control study
既往剖宫产妇女接受体外受精的生殖结果:回顾性病例对照研究
- DOI:
10.1007/s11596-017-1828-3 - 发表时间:
2017-12-21 - 期刊:
- 影响因子:2.4
- 作者:
Ya;Tai;Wang;Qian;Xiao;Jing Yang - 通讯作者:
Jing Yang
Association of nocturnal sleep duration and sleep midpoint with osteoporosis risk in rural adults: a large-scale cross-sectional study
农村成年人夜间睡眠持续时间和睡眠中点与骨质疏松风险的关联:一项大规模横断面研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.5
- 作者:
Hongfei Zhao;Linghui Zhu;L. Fan;Jing Yang;J. Hou;Gongyuan Zhang;Chongjian Wang;Jun Pan - 通讯作者:
Jun Pan
Jing Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Yang', 18)}}的其他基金
Collaborative Research: CNS Core: Small: Timely Computing and Learning over Communication Networks
合作研究:CNS 核心:小型:通过通信网络进行及时计算和学习
- 批准号:
2114542 - 财政年份:2021
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Learning-Efficient Spectrum Access for No-Sensing Devices in Shared Spectrum
合作研究:SWIFT:SMALL:共享频谱中无感知设备的学习高效频谱访问
- 批准号:
2030026 - 财政年份:2020
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
- 批准号:
2003131 - 财政年份:2020
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
CNS Core: Medium: When Next Generation Wireless Networks Meet Machine Learning
CNS 核心:中:当下一代无线网络遇到机器学习时
- 批准号:
1956276 - 财政年份:2020
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
Development of a 3D human in vitro model of pancreatic beta cell health
开发胰腺 β 细胞健康的 3D 人体体外模型
- 批准号:
EP/N510099/1 - 财政年份:2017
- 资助金额:
$ 27.48万 - 项目类别:
Research Grant
CAREER: When Energy Harvesting Meets "Big Data": Designing Smart Energy Harvesting Wireless Sensor Networks
职业:当能量收集遇到“大数据”:设计智能能量收集无线传感器网络
- 批准号:
1650299 - 财政年份:2016
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
SI2-SSE: Collaborative Research: TrajAnalytics: A Cloud-Based Visual Analytics Software System to Advance Transportation Studies Using Emerging Urban Trajectory Data
SI2-SSE:合作研究:TrajAnalytics:基于云的视觉分析软件系统,利用新兴城市轨迹数据推进交通研究
- 批准号:
1535081 - 财政年份:2015
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
CAREER: When Energy Harvesting Meets "Big Data": Designing Smart Energy Harvesting Wireless Sensor Networks
职业:当能量收集遇到“大数据”:设计智能能量收集无线传感器网络
- 批准号:
1454471 - 财政年份:2015
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Visualizing Event Dynamics with Narrative Animation
EAGER:协作研究:用叙事动画可视化事件动态
- 批准号:
1352893 - 财政年份:2013
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
EAGER: Link Free Graph Visualization for Exploring Large Complex Graphs
EAGER:用于探索大型复杂图的链接自由图可视化
- 批准号:
0946400 - 财政年份:2009
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
相似国自然基金
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
信息为中心网络缓存协同优化策略与验证方法研究
- 批准号:61802014
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
用户移动状态下的5G超密集异构网络自优化技术研究
- 批准号:61871045
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
基于协作的云存储外延服务优化机制研究
- 批准号:61073015
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
基于差分混沌移位键控的超宽带关键技术研究
- 批准号:61001073
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
- 批准号:
2307979 - 财政年份:2023
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
- 批准号:
2307978 - 财政年份:2023
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234032 - 财政年份:2023
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234031 - 财政年份:2023
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Rethinking Multi-User VR - Jointly Optimized Representation, Caching and Transport
合作研究:CNS 核心:媒介:重新思考多用户 VR - 联合优化表示、缓存和传输
- 批准号:
2212201 - 财政年份:2022
- 资助金额:
$ 27.48万 - 项目类别:
Continuing Grant