NRI/Collaborative Research: Robot-Assisted Feeding: Towards Efficient, Safe, and Personalized Caregiving Robots
NRI/合作研究:机器人辅助喂养:迈向高效、安全和个性化的护理机器人
基本信息
- 批准号:2132847
- 负责人:
- 金额:$ 50.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop caregiving robots that can provide long-term assistance with activities of daily living (ADLs) to people with mobility limitations. Despite great strides taken towards sustainable solutions in controlled environments, robots are far from ready for adoption in real home environments as long-term caregiving solutions. Key factors could be the over-reliance on full autonomy in tasks that require dynamic physical and social interactions in unstructured environments as well as the lack of personalized assistance. Based on the central tenet that robots need to optimize both physical and social interactions to provide efficient, safe, and personalized assistance for ADLs, this work will focus on developing robot-assisted feeding as a long-term caregiving solution for a person with upper-extremity disability in an unstructured, real-home environment. Successful feeding consists of bite acquisition (i.e., picking up a food item) and bite transfer (i.e., moving it into the mouth). This project develops methods to integrate these activities towards the development of an intelligent and personalized robot-assisted feeding system. The models leverage multimodal feedback to develop human-in-the-loop control policies that adapt to a range of human and environmental factors. Realizing that full autonomy can be challenging in unstructured and dynamic environments, the methods will leverage expert human feedback while minimizing the cognitive load and interweave them intelligently with autonomy to arrive at a long-term caregiving solution. This work will have a direct impact on the lives, health, and comfort of millions of people in the world who live with motor impairments. Developing policies that consider the human in the loop at every step and learn from their feedback through multiple modalities will have an impact on many other human-robot interaction domains including but not limited to assistive teleoperation.This project will advance the state of the art of robotics from both a technical and algorithmic perspective. First, novel bite acquisition algorithms will be developed that are capable of picking up deformable objects in unstructured settings. Second, bite-transfer algorithms will be developed that learn from physical feedback provided on the robot or on the utensil when transferring food inside of a person's mouth. Finally, the research team will develop active and adaptive algorithms that tap into other sources of data, such as comparisons or language instructions, to intelligently improve the acquisition and transfer algorithms and personalize the feeding experience. This work leverages the idea of learning from multimodal human feedback---specifically by embracing physical interactions rather than trying to avoid them---to better manipulate and transfer food. The assistive acquisition and transfer algorithms will be extensively evaluated through human subject studies. The algorithms will be implemented on multiple high-degree-of-freedom robotic platforms across labs. Planned user studies and low-level implementations will advance the state of robotics outside of assistive feeding, particularly towards other ADLs or Instrumental ADLs (IADLs) in home settings, such as meal-preparation, cooking, and housework.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是开发护理机器人,为行动不便的人提供日常生活活动(ADL)的长期帮助。尽管在受控环境中的可持续解决方案方面取得了巨大进步,但机器人还远未准备好在真实家庭环境中作为长期护理解决方案采用。关键因素可能是在非结构化环境中需要动态身体和社交互动的任务中过度依赖完全自主,以及缺乏个性化帮助。基于机器人需要优化身体和社交互动,为 ADL 提供高效、安全和个性化的帮助这一中心原则,这项工作将重点开发机器人辅助喂养,作为患有上肢障碍的人的长期护理解决方案。在非结构化的真实家庭环境中出现肢体残疾。成功的喂养包括咬合获取(即拿起食物)和咬合转移(即将其移入嘴中)。该项目开发了将这些活动整合起来的方法,以开发智能和个性化的机器人辅助喂养系统。这些模型利用多模式反馈来制定适应一系列人类和环境因素的人机循环控制策略。意识到在非结构化和动态环境中完全自主可能具有挑战性,这些方法将利用专家的人类反馈,同时最大限度地减少认知负荷,并将它们与自主智能地交织在一起,以达成长期护理解决方案。这项工作将对世界上数百万运动障碍患者的生活、健康和舒适产生直接影响。制定在每一步都考虑人类参与并通过多种方式从他们的反馈中学习的政策将对许多其他人机交互领域产生影响,包括但不限于辅助远程操作。该项目将推进最先进的技术从技术和算法的角度来看机器人技术。首先,将开发新颖的咬合采集算法,能够在非结构化环境中拾取可变形物体。其次,将开发咬转移算法,当将食物转移到人的嘴里时,该算法可以从机器人或器具上提供的物理反馈进行学习。最后,研究团队将开发主动和自适应算法,利用其他数据源,例如比较或语言指令,以智能地改进采集和传输算法并个性化喂养体验。这项工作利用了从多模式人类反馈中学习的想法——特别是通过拥抱身体互动而不是试图避免它们——来更好地操纵和转移食物。辅助采集和传输算法将通过人体研究进行广泛评估。这些算法将在实验室的多个高自由度机器人平台上实施。计划中的用户研究和低水平实施将促进辅助喂养之外的机器人技术的发展,特别是家庭环境中的其他 ADL 或工具性 ADL (IADL),例如准备饭菜、烹饪和家务劳动。该奖项反映了 NSF 的法定使命通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Balancing Efficiency and Comfort in Robot-Assisted Bite Transfer
平衡机器人辅助咬合转移的效率和舒适度
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Suneel Belkhale; Ethan Kroll
- 通讯作者:Ethan Kroll
Eliciting Compatible Demonstrations for Multi-Human Imitation Learning
引出多人模仿学习的兼容演示
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Kanishk Gandhi; Siddharth Karamcheti
- 通讯作者:Siddharth Karamcheti
Learning Sequential Acquisition Policies for Robot-Assisted Feeding
学习机器人辅助喂养的顺序采集策略
- DOI:10.48550/arxiv.2309.05197
- 发表时间:2023-09-11
- 期刊:
- 影响因子:0
- 作者:Priya Sundaresan;Jiajun Wu;Dorsa Sadigh
- 通讯作者:Dorsa Sadigh
In-Mouth Robotic Bite Transfer with Visual and Haptic Sensing
具有视觉和触觉感应的口内机器人咬合转移
- DOI:
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Shaikewitz, Lorenzo;Wu, Yilin;Belkhale, Suneel;Grannen, Jennifer;Sundaresan, Priya;Sadigh, Dorsa
- 通讯作者:Sadigh, Dorsa
KITE: Keypoint-Conditioned Policies for Semantic Manipulation
KITE:用于语义操作的关键点条件策略
- DOI:10.48550/arxiv.2306.16605
- 发表时间:2023-06-29
- 期刊:
- 影响因子:0
- 作者:Priya Sundaresan;Suneel Belkhale;Dorsa Sadigh;J. Bohg
- 通讯作者:J. Bohg
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dorsa Sadigh其他文献
Active Preference-Based Learning of Reward Functions
基于偏好的主动奖励函数学习
- DOI:
10.15607/rss.2017.xiii.053 - 发表时间:
2017-07-12 - 期刊:
- 影响因子:0
- 作者:
Dorsa Sadigh;A. Dragan;S. Sastry;S. Seshia - 通讯作者:
S. Seshia
BLEU Neighbors: A Reference-less Approach to Automatic Evaluation
BLEU 邻居:一种无参考自动评估方法
- DOI:
10.18653/v1/2020.eval4nlp-1.5 - 发表时间:
2020-04-27 - 期刊:
- 影响因子:0
- 作者:
Kawin Ethayarajh;Dorsa Sadigh - 通讯作者:
Dorsa Sadigh
Object Exchangeability in Reinforcement Learning: Extended Abstract
强化学习中的对象可交换性:扩展摘要
- DOI:
10.1109/tpami.2021.3069005 - 发表时间:
2019-05-07 - 期刊:
- 影响因子:0
- 作者:
John Mern;Dorsa Sadigh;Mykel J. Kochenderfer - 通讯作者:
Mykel J. Kochenderfer
Altruistic Autonomy: Beating Congestion on Shared Roads
无私的自治:克服共享道路上的拥堵
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Erdem Biyik;Daniel A. Lazar;Ramtin Pedarsani;Dorsa Sadigh - 通讯作者:
Dorsa Sadigh
SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities
SpatialVLM:赋予视觉语言模型空间推理能力
- DOI:
10.48550/arxiv.2401.12168 - 发表时间:
2024-01-22 - 期刊:
- 影响因子:0
- 作者:
Boyuan Chen;Zhuo Xu;Sean Kirmani;Brian Ichter;Danny Driess;Pete Florence;Dorsa Sadigh;Leonidas Guibas;Fei Xia - 通讯作者:
Fei Xia
Dorsa Sadigh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dorsa Sadigh', 18)}}的其他基金
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
- 批准号:
2218760 - 财政年份:2022
- 资助金额:
$ 50.85万 - 项目类别:
Standard Grant
CPS: Medium: Sufficient Statistics for Learning Multi-Agent Interactions
CPS:中:学习多智能体交互的足够统计数据
- 批准号:
2125511 - 财政年份:2021
- 资助金额:
$ 50.85万 - 项目类别:
Standard Grant
CHS: Small: Learning and Leveraging Conventions in Human-Robot Interaction
CHS:小:学习和利用人机交互中的约定
- 批准号:
2006388 - 财政年份:2020
- 资助金额:
$ 50.85万 - 项目类别:
Standard Grant
Collaborative Research: Mixed-Autonomy Traffic Networks: Routing Games and Learning Human Choice Models
合作研究:混合自主交通网络:路由博弈和学习人类选择模型
- 批准号:
1953032 - 财政年份:2020
- 资助金额:
$ 50.85万 - 项目类别:
Standard Grant
CAREER: Safe and Influencing Interactions for Human-Robot Systems
职业:人机系统的安全且有影响力的交互
- 批准号:
1941722 - 财政年份:2020
- 资助金额:
$ 50.85万 - 项目类别:
Continuing Grant
CRII: RI: Active Learning of Preferences for Human-Aware Autonomy
CRII:RI:主动学习人类意识自主偏好
- 批准号:
1849952 - 财政年份:2019
- 资助金额:
$ 50.85万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
- 批准号:
2422640 - 财政年份:2024
- 资助金额:
$ 50.85万 - 项目类别:
Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
- 批准号:
2327702 - 财政年份:2023
- 资助金额:
$ 50.85万 - 项目类别:
Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
- 批准号:
2410255 - 财政年份:2023
- 资助金额:
$ 50.85万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2348839 - 财政年份:2023
- 资助金额:
$ 50.85万 - 项目类别:
Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
- 批准号:
2327702 - 财政年份:2023
- 资助金额:
$ 50.85万 - 项目类别:
Standard Grant