Coarse Geometry of Topological Groups
拓扑群的粗略几何
基本信息
- 批准号:2204849
- 负责人:
- 金额:$ 23.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Groups appear in numerous areas of mathematics, chemistry and physics and have had tremendous impact as an organizational tool within mathematics. They often appear as the set of symmetries of a geometric object, for example, of 3-dimensional space, a molecule or a crystal. Oftentimes, the set of symmetries themselves, i.e., the group, has a natural topological structure. That is, one can speak of one symmetry being close to another, as in the case of two rotations of 3-dimensional space being close if they differ by a small angle. These latter groups are called topological transformation groups and are trivially related to geometry via the geometric object of which they are the set of symmetries. However, other topological groups are not so easily viewed as coming from geometry. This is, for example, the case for the systems of solutions to many differential equations which form a group under addition called a Banach space. However, one of the principal ideas of the present project is that all topological groups have natural intrinsic geometric structure which is defined jointly by their topological and algebraic structure. Moreover, this geometric structure can in many cases provide significant insight into the structure of the group by blotting out finer details that obscure the global or large scale properties of the group.The primary aim of this project is to investigate the coarse geometry of topological and, in particular, Polish groups. In earlier research, the PI has established and investigated a natural coarse structure that every topological group is equipped with and which coincides with that traditionally studied on finitely generated or locally compact groups, Banach spaces or even homeomorphism groups of compact manifolds. Particularly interesting subclasses to be studied are the Polish groups of bounded geometry for which the geometric structure theory is well-advanced. Several interesting questions on the extent of this class of groups remain open, for example, whether every Polish group of bounded geometry is coarsely equivalent to a locally compact group. The research program is by nature interdisciplinary. While its origins lie in descriptive set theory, the main examples of groups to be studied arise in various disciplines of mathematics, including functional analysis, logic, and geometric and differential topology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
小组出现在数学、化学和物理的许多领域,并且作为数学中的组织工具产生了巨大的影响。它们通常表现为几何对象的对称性集合,例如 3 维空间、分子或晶体。通常,对称性集本身(即群)具有自然的拓扑结构。也就是说,我们可以说一种对称性接近另一种对称性,就像 3 维空间的两次旋转如果相差很小的角度则接近的情况一样。后面的这些群被称为拓扑变换群,并且通过作为对称集的几何对象与几何无关。然而,其他拓扑群并不那么容易被视为来自几何。例如,许多微分方程的解系统就是这种情况,这些微分方程在加法下形成一个群,称为巴纳赫空间。然而,本项目的主要思想之一是所有拓扑群都具有自然的内在几何结构,该结构由它们的拓扑和代数结构共同定义。此外,这种几何结构在许多情况下可以通过消除掩盖群的全局或大尺度特性的更精细的细节来提供对群结构的重要洞察。该项目的主要目的是研究拓扑和拓扑的粗略几何形状。 ,特别是波兰团体。在早期的研究中,PI建立并研究了每个拓扑群都配备的自然粗结构,该结构与传统上对有限生成或局部紧群、Banach空间甚至紧流形同胚群的研究相一致。要研究的特别有趣的子类是有界几何的波兰群,其几何结构理论非常先进。关于此类群的范围的几个有趣的问题仍然悬而未决,例如,有界几何的每个波兰群是否粗略地等效于局部紧群。该研究项目本质上是跨学科的。虽然它起源于描述性集合论,但要研究的群的主要例子出现在数学的各个学科中,包括泛函分析、逻辑、几何和微分拓扑。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On uniform and coarse rigidity of L^p([0,1])
关于 L^p([0,1]) 的均匀粗刚度
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0.8
- 作者:Christian Rosendal
- 通讯作者:Christian Rosendal
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christian Rosendal其他文献
A topological version of the Bergman property
伯格曼性质的拓扑版本
- DOI:
10.1515/forum.2009.014 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Christian Rosendal - 通讯作者:
Christian Rosendal
Entanglement of a circular mapping catheter in the mitral valve with persistent iatrogenic atrial septal defect after attempted pulmonary vein isolation: a word of caution.
尝试肺静脉隔离后,圆形标测导管在二尖瓣中与持续性医源性房间隔缺损纠缠:需要注意。
- DOI:
10.5761/atcs.cr.12.01967 - 发表时间:
2014 - 期刊:
- 影响因子:1.3
- 作者:
A. Weymann;B. Schmack;H. Rauch;Christian Rosendal;M. Karck;G. Szabó - 通讯作者:
G. Szabó
DESCRIPTIVE CLASSIFICATION THEORY AND SEPARABLE BANACH SPACES
描述性分类理论和可分 Banach 空间
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Christian Rosendal - 通讯作者:
Christian Rosendal
Isomorphism of borel full groups
Borel满群同构
- DOI:
10.1090/s0002-9939-06-08542-x - 发表时间:
2006 - 期刊:
- 影响因子:1.2
- 作者:
B. D. Miller;Christian Rosendal - 通讯作者:
Christian Rosendal
Displaying Polish Groups on Separable Banach Spaces
在可分离 Banach 空间上显示波兰群
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
V. Ferenczi;Christian Rosendal - 通讯作者:
Christian Rosendal
Christian Rosendal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christian Rosendal', 18)}}的其他基金
Coarse Geometry of Topological Groups
拓扑群的粗略几何
- 批准号:
1764247 - 财政年份:2018
- 资助金额:
$ 23.99万 - 项目类别:
Continuing Grant
Large scale geometry of Polish groups
波兰群体的大尺度几何结构
- 批准号:
1464974 - 财政年份:2015
- 资助金额:
$ 23.99万 - 项目类别:
Continuing Grant
Descriptive set theory and its relations with functional and harmonic analysis
描述集合论及其与泛函分析和调和分析的关系
- 批准号:
1201295 - 财政年份:2012
- 资助金额:
$ 23.99万 - 项目类别:
Continuing Grant
Applications of descriptive set theory to functional analysis and topological dynamics
描述集合论在泛函分析和拓扑动力学中的应用
- 批准号:
0901405 - 财政年份:2009
- 资助金额:
$ 23.99万 - 项目类别:
Standard Grant
相似国自然基金
奇异黎曼叶状结构的微分几何学研究
- 批准号:12371048
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
非欧几何学的若干历史问题研究
- 批准号:12161086
- 批准年份:2021
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于代数几何学的统计学习理论研究
- 批准号:12171382
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
中天山乌拉斯台韧性剪切带几何学与运动学构造解析
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 23.99万 - 项目类别:
Fellowship Award
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
- 批准号:
2401178 - 财政年份:2024
- 资助金额:
$ 23.99万 - 项目类别:
Standard Grant
Refinement and q-deformation of topological recursion and their applications
拓扑递归的细化和q变形及其应用
- 批准号:
23K12968 - 财政年份:2023
- 资助金额:
$ 23.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
- 批准号:
10884028 - 财政年份:2023
- 资助金额:
$ 23.99万 - 项目类别:
DMS/NIGMS 1: Topological Dynamics Models of Protein Function
DMS/NIGMS 1:蛋白质功能的拓扑动力学模型
- 批准号:
10794436 - 财政年份:2023
- 资助金额:
$ 23.99万 - 项目类别: