Dynamics and Non-Dissipative Approximations of Nonlinear Nonlocal Fluid Equations

非线性非局部流体方程的动力学和非耗散近似

基本信息

  • 批准号:
    2204614
  • 负责人:
  • 金额:
    $ 18.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The modeling of hydrodynamic and other field theories usually starts with simpler description of the phenomena – in the form of partial differential equations – and then adds correction terms to better account of the underlying physics. Prototypical of this situation is the addition of viscosity to the Euler equations for an incompressible flow, resulting in the Navier-Stokes equations. The addition of these corrections often have profound consequences, such as making the solutions of the equations better behaved, i.e., regularized, and physically more realistic, but also add further complexities due to the introduction of nonlocal effects and additional spatiotemporal scales and manifested, for example, in the development of boundary layers. This project addresses these issues by investigating the mathematical consequences of various regularization approaches on hydrodynamical models arising in practical applications, such as geophysical fluid dynamics and electrochemistry. The study includes the formulation of effective approximations when the regularization effects are weak, and their use to find new approximation methods to compute the solutions to these problems in those regimes. The project will also provide training opportunities for graduate students and postdocs. The project is aimed at establishing global regularity for critical, non-dissipative Kelvin-Voigt (KV) approximations of hydrodynamic equations. The models considered include the surface quasigeostrophic equation, the inviscid porous medium equation, Darcy-Boussinesq equations, and electroconvection equations in non-Newtonian and porous media. Successful resolution of these problems requires the introduction of novel ideas and analytical tools. The project is to investigate the long-time behavior of solutions of the models and of their KV approximations, including studies of nonlinear stability and instability of specific steady states, and studies of formation of small scales and blow up. The project addresses the validity of the limit of vanishing KV approximation in the equations. The project introduces specific partial KV regularizations of the Navier-Stokes equations, aiming to establish their zero-viscosity limit in the presence of boundaries, their Prandtl expansions and associated Prandtl equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
流体动力学和其他场论的建模通常从对现象的更简单描述(以偏微分方程的形式)开始,然后添加修正项以更好地解释基础物理现象,这种情况的典型例子是在欧拉方程中添加粘度。不可压缩流的方程,产生纳维-斯托克斯方程。这些修正的添加通常会产生深远的影响,例如使方程的解表现更好,即正则化,并且物理上更现实,但由于引入了非局域效应和额外的时空尺度,并增加了进一步的复杂性,例如,在边界层的开发中,该项目通过研究实际应用中出现的流体动力学模型的各种正则化方法的数学后果来解决这些问题。 ,例如地球物理流体动力学和电化学。该研究包括在正则化效应较弱时制定有效近似,以及使用它们来寻找新的近似方法来计算这些情况下这些问题的解决方案。该项目还将为研究生和博士后提供培训机会,旨在建立流体动力学方程的关键非耗散开尔文-沃格特(KV)近似的全局规律,所考虑的模型包括表面准地转方程、无粘性多孔方程。非牛顿和多孔介质中的介质方程、达西-布辛斯克方程和电对流方程的成功解决需要引入新的方法。该项目旨在研究模型及其 KV 近似解的长期行为,包括特定稳态的非线性稳定性和不稳定性研究,以及小尺度和爆炸项目的形成研究。解决了方程中消失 KV 近似极限的有效性该项目引入了纳维-斯托克斯方程的特定部分 KV 正则化,旨在在存在边界的情况下建立其零粘度极限,他们的普朗特展开式和相关的普朗特方程。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Existence and stability of nonequilibrium steady states of Nernst–Planck–Navier–Stokes systems
能斯特-普朗克-纳维-斯托克斯系统非平衡稳态的存在性和稳定性
  • DOI:
    10.1016/j.physd.2022.133536
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Constantin, Peter;Ignatova, Mihaela;Lee, Fizay-Noah
  • 通讯作者:
    Lee, Fizay-Noah
Global Smooth Solutions of the Nernst–Planck–Darcy System
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mihaela Ignatova其他文献

Mihaela Ignatova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

空间可展结构非光滑动力学系统局部能量耗散机理的保结构方法
  • 批准号:
    11972284
  • 批准年份:
    2019
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
量子计量学中的量子耗散噪声机制及其动力学控制研究
  • 批准号:
    11875150
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
具有非局部耗散梁(板)方程解的适定性及长时间动力学行为的研究
  • 批准号:
    11801145
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
非保守动力学系统对称破缺与耗散效应的广义多辛表征
  • 批准号:
    11872303
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
光合作用反应中心非马尔科夫量子热机描述及其效率研究
  • 批准号:
    21773131
  • 批准年份:
    2017
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Dissipative structures in the non-equilibrium dynamics of chiral liquid crystal droplets
手性液晶液滴非平衡动力学中的耗散结构
  • 批准号:
    20K14433
  • 财政年份:
    2020
  • 资助金额:
    $ 18.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Dissipative structure in granular segregation: cross-talk between rheology and interface dynamics
颗粒偏析中的耗散结构:流变学和界面动力学之间的串扰
  • 批准号:
    19K14614
  • 财政年份:
    2019
  • 资助金额:
    $ 18.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Computational Chemistry on Internal Structures and Rheological Properties of Functional Colloids in Non-equilibrium Fields
非平衡场功能胶体内部结构和流变性质的计算化学
  • 批准号:
    15550126
  • 财政年份:
    2003
  • 资助金额:
    $ 18.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamental research on dynamics of dissipative particles
耗散粒子动力学基础研究
  • 批准号:
    15540393
  • 财政年份:
    2003
  • 资助金额:
    $ 18.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Pattern Formation of Dynamical Model for Traffic Flow
交通流动态模型的模式形成
  • 批准号:
    10650066
  • 财政年份:
    1998
  • 资助金额:
    $ 18.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了