CISE-MSI: DP: IIS:III: Deep Learning Based Automated Concept and Caption Generation of Medical Images Towards Developing an Effective Decision Support System (DSS)

CISE-MSI:DP:IIS:III:基于深度学习的医学图像自动概念和标题生成,以开发有效的决策支持系统 (DSS)

基本信息

  • 批准号:
    2131207
  • 负责人:
  • 金额:
    $ 43.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Identifying and labeling important features in medical images such as X-rays and ultrasounds is fundamental to both diagnosis itself and to building libraries of images that support education, training, and auditing of medical quality. This work is time-consuming even for trained experts, making it an impactful and important problem domain to study for researchers in computer vision, machine learning (ML), and natural language processing (NLP). These artificial intelligence (AI)-based techniques have made great progress in object recognition and labeling for everyday camera images; however, medical images pose additional challenges because of the need to account for detail and relationships between substructures in the image, the need to generate captions that apply not just to the whole image but to these important substructures, and the need to handle noise and artifacts created in medical image processing. Further, the tolerance for error is low; interpretations need to be coherent, grammatically, and semantically correct in order to be useful. This project focuses on the intersection of biomedical informatics and imaging science, working to develop high quality datasets of human-annotated visual concepts in images that appear in public collections such as open access biomedical journals, then using those datasets to train novel vision, ML, and NLP algorithms. The work will support multi-institutional research and educational collaborations between three minority-serving institutions, providing advanced research and classroom training in AI, ML, and cloud computing to students from groups historically underrepresented in computing. To improve image interpretation and retrieval effectiveness, this project will (1) create a crowdsourcing-based annotation system to clinically annotate important regions of interest (ROIs) of images; (2) advance object detection models to segment images and map medical image ROIs; (3) advance multilabel concept classification techniques by considering correlations between concepts; and (4) apply contextualized embeddings via deep language models to generate the captions. The proposed approaches will be evaluated through comparison with current methods in benchmark datasets, including the ones constructed for this project. The end goal is the development of an AI-based prototype that helps physicians focus on interesting image regions, find relevant comparison images, and describe findings in correct and standard ways, all of which can reduce medical errors and benefit both medical departments and society by reducing the cost per exam. In addition to the research objectives, the project will implement a research-education medical AI training program including cloud-enabled classrooms, cross-institutional mentoring, and partnering with an existing industry internship “pathway to success” initiative to build the science and technology workforce of the future.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来源于《2021 年美国救援计划法案》(公法 117-2)。识别和标记 X 射线和超声波等医学图像中的重要特征对于诊断本身和建立图书馆至关重要即使对于训练有素的专家来说,这项工作也很耗时,这使其成为计算机视觉、机器学习 (ML) 和自然语言研究人员研究的一个有影响力且重要的问题领域。加工(NLP)。这些基于人工智能(AI)的技术在日常相机图像的对象识别和标记方面取得了巨大进步;然而,由于需要考虑图像中子结构之间的细节和关系,医学图像带来了额外的挑战,需要生成不仅适用于整个图像而且适用于这些重要子结构的说明,并且需要处理医学图像处理中产生的噪声和伪影此外,对错误的容忍度需要在语法上保持一致;并按顺序语义正确该项目专注于生物医学信息学和成像科学的交叉点,致力于开发开放获取生物医学期刊等公共收藏中出现的图像中人工注释视觉概念的高质量数据集,然后使用这些数据集来训练新颖的图像。这项工作将支持三个少数族裔服务机构之间的多机构研究和教育合作,为来自计算领域历史上代表性不足的群体的学生提供人工智能、机器学习和云计算方面的高级研究和课堂培训。为了提高图像解释和检索效率,该项目将(1)创建基于众包的注释系统,以临床注释图像的重要感兴趣区域(ROI);(2)改进对象检测模型以分割图像并映射医学图像 ROI; (3)通过考虑概念之间的相关性来推进多标签概念分类技术;(4)通过深度语言模型应用上下文嵌入来生成标题,将通过与基准数据集中的当前方法进行比较来评估所提出的方法。该项目的最终目标是开发基于人工智能的原型,帮助医生关注有趣的图像区域,找到相关的比较图像,并以正确和标准的方式描述结果,所有这些都可以减少医疗错误并受益。通过降低每次考试的成本,该项目还将实施研究教育医学人工智能培训计划,包括云课堂、跨机构指导以及与现有的行业实习合作。成功之路”倡议建立科学该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Concept Detection and Caption Prediction in ImageCLEFmedical Caption 2023 with Convolutional Neural Networks; Vision and Text-to-Text Transfer Transformers
使用卷积神经网络进行 ImageCLEFmedical Caption 2023 中的概念检测和字幕预测;
CS_Morgan at ImageCLEFmedical 2022 Caption Task: Deep Learning Based Multi-Label Classification and Transformers for Concept Detection & Caption Prediction
CS_Morgan 在 ImageCLEFmedical 2022 标题任务:基于深度学习的多标签分类和用于概念检测的 Transformers
Statistical Analysis of Imbalanced Classification with Training Size Variation and Subsampling on Datasets of Research Papers in Biomedical Literature
生物医学文献研究论文数据集训练规模变化和子采样的不平衡分类统计分析
Media Interestingness Prediction in ImageCLEFfusion 2023 with Dense Architecture-based Ensemble & Scaled; Gradient Boosting Regressor Model
使用基于密集架构的集成在 ImageCLEFfusion 2023 中进行媒体兴趣度预测
  • DOI:
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emon, M;Rahman, M.
  • 通讯作者:
    Rahman, M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Md Rahman其他文献

Bacteriological quality and prevalence of foodborne bacteria in broiler meat sold at live bird markets at Mymensingh City in Bangladesh
孟加拉国迈门辛市活禽市场销售的肉鸡中的细菌学质量和食源性细菌的流行情况
Enhancing lean supply chain through traffic light quality management system
通过红绿灯质量管理系统增强精益供应链
  • DOI:
    10.5267/j.msl.2013.01.036
  • 发表时间:
    2013-03-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Md.Mazharul Islam;Md Rahman
  • 通讯作者:
    Md Rahman
A Novel Rule-Based Online Judge Recommender System to Promote Computer Programming Education
一种促进计算机编程教育的新型基于规则的在线法官推荐系统
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Md Rahman; Yutaka Watanobe; Uday Kiran Rage; Keita Nakamura
  • 通讯作者:
    Keita Nakamura
Linking between contamination of environmental water and Salmonella foodborne illness: A Review
环境水污染与沙门氏菌食源性疾病之间的联系:综述
Effects of different levels of oxalic acid administration on feed intake and nutrient digestibility in goats
不同水平草酸施用对山羊采食量和养分消化率的影响
  • DOI:
    10.17576/jsm-2017-4604-01
  • 发表时间:
    2017-04-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. M. Rahman;Md Rahman;M. Niimi;W. Khadijah;R. Akashi;R. Abdullah
  • 通讯作者:
    R. Abdullah

Md Rahman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Md Rahman', 18)}}的其他基金

Collaborative Research: EAGER: AI-Assisted Just-in-Time Scaffolding Framework for Exploring Modern Computer Design
合作研究:EAGER:用于探索现代计算机设计的人工智能辅助即时脚手架框架
  • 批准号:
    2327972
  • 财政年份:
    2023
  • 资助金额:
    $ 43.98万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: AI-Assisted Just-in-Time Scaffolding Framework for Exploring Modern Computer Design
合作研究:EAGER:用于探索现代计算机设计的人工智能辅助即时脚手架框架
  • 批准号:
    2327972
  • 财政年份:
    2023
  • 资助金额:
    $ 43.98万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: Hardware Security Education for All Through Seamless Extension of Existing Curricula
合作研究:SaTC:EDU:通过无缝扩展现有课程为所有人提供硬件安全教育
  • 批准号:
    2114200
  • 财政年份:
    2021
  • 资助金额:
    $ 43.98万
  • 项目类别:
    Standard Grant
CRII: SaTC: Rowhammer Attack on Fresh and Recycled Memory Chips: Security Risks and Defenses
CRII:SaTC:对新鲜和回收内存芯片的 Rowhammer 攻击:安全风险和防御
  • 批准号:
    2214108
  • 财政年份:
    2021
  • 资助金额:
    $ 43.98万
  • 项目类别:
    Standard Grant
CRII: SaTC: Rowhammer Attack on Fresh and Recycled Memory Chips: Security Risks and Defenses
CRII:SaTC:对新鲜和回收内存芯片的 Rowhammer 攻击:安全风险和防御
  • 批准号:
    1850241
  • 财政年份:
    2019
  • 资助金额:
    $ 43.98万
  • 项目类别:
    Standard Grant
Research Initiation Award: Integrating Image and Text Information for Biomedical Literature-Based Cross and Multimodal Retrieval
研究启动奖:基于图像和文本信息的生物医学文献交叉和多模态检索整合
  • 批准号:
    1601044
  • 财政年份:
    2016
  • 资助金额:
    $ 43.98万
  • 项目类别:
    Standard Grant
Targeted Infusion Project: Infusing Computational Thinking and Visual Learning into an Introductory Computer Science Course to Promote Students' Success and Retention
有针对性的注入项目:将计算思维和视觉学习注入计算机科学入门课程,以促进学生的成功和保留
  • 批准号:
    1623335
  • 财政年份:
    2016
  • 资助金额:
    $ 43.98万
  • 项目类别:
    Standard Grant

相似国自然基金

外泌体MSI1调控去泛素化酶USP28诱导肝Kupffer细胞极化在乳腺癌肝转移中的作用和机制研究
  • 批准号:
    82303449
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MALDI-MSI技术的我国白头翁属药材显微质谱成像鉴定研究
  • 批准号:
    82373999
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
探索MSI-H肿瘤内源TREX1调控抗肿瘤免疫的机制及相关免疫治疗策略开发
  • 批准号:
    82371848
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
MSI1/circBRCA1调控LATS1mRNA稳定性促进BRCA1突变的卵巢癌铂敏感的分子机理
  • 批准号:
    82303588
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维MSi2N4半导体点缺陷的电子显微学研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

CISE-MSI: DP: SaTC: CyIndiBee - CyberInfrastructure for video analysis of individual bee behavior
CISE-MSI:DP:SaTC:CyIndi​​Bee - 用于单个蜜蜂行为视频分析的网络基础设施
  • 批准号:
    2318597
  • 财政年份:
    2023
  • 资助金额:
    $ 43.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: HCC: Buenas - Giving All a Seat at the Table Using Mixed Reality
协作研究:CISE-MSI:DP:HCC:布埃纳斯 - 使用混合现实为所有人提供席位
  • 批准号:
    2318657
  • 财政年份:
    2023
  • 资助金额:
    $ 43.98万
  • 项目类别:
    Standard Grant
Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
  • 批准号:
    2318662
  • 财政年份:
    2023
  • 资助金额:
    $ 43.98万
  • 项目类别:
    Standard Grant
Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
  • 批准号:
    2318663
  • 财政年份:
    2023
  • 资助金额:
    $ 43.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: HCC: Buenas - Giving All a Seat at the Table Using Mixed Reality
协作研究:CISE-MSI:DP:HCC:布埃纳斯 - 使用混合现实为所有人提供席位
  • 批准号:
    2318658
  • 财政年份:
    2023
  • 资助金额:
    $ 43.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了