Collaborative Research: CISE-MSI: RCBP-RF: CPS: Develop Scalable and Reliable Deep Learning-driven Embedded Control Applied in Renewable Energy Integration
合作研究:CISE-MSI:RCBP-RF:CPS:开发可扩展且可靠的深度学习驱动的嵌入式控制应用于可再生能源集成
基本信息
- 批准号:2131175
- 负责人:
- 金额:$ 13.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Recently deep learning has succeeded mainly in image processing, language processing fields. However, in the real-time control field, deep learning has just started to challenge the dominant role of proportional-integral-derivative controllers in industrial applications, e.g., real-time control of power converters for renewable energy integration. Many urgent problems including training difficulty, the implementation challenges on embedded devices, are curbing deep learning from the development and implementation in embedded control settings. To overcome these difficulties, this project aims to develop novel scalable training algorithms and novel deep neural network controller architectures to fit the strict requirement of embedded control settings.The interdisciplinary project will develop scalable and reliable deep learning-driven embedded control of power converters in real-time for integrating renewable energy such as solar power. Specifically, this project aims (a) to develop scalable, parallel, fast training algorithms for high sampling frequency, and long-time duration trajectory learning using an high performance computing or cloud platform that will significantly reduce training time from several days, even weeks to several hours, (b) to develop novel deep neural network architectures that can be implemented in embedded devices, e.g., Digital Signal Processors / Field-programmable Gate Arrays without compromising the neural network generalizability and extra computing power and storage requirements.The project will build and enhance interdisciplinary and inter-institution collaborations between two Minority Serving Institutions: Texas A&M University-Kingsville and North Carolina A&T State University. The project will attract, retain, and educate more minorities particularly Hispanic, African-American, and female students to attend Ph.D. programs. The developed new training algorithm and new architectures for embedded control can be extended to other fields, e.g., bioinformatics, image, robotics, etc. The developed technologies will result in deep learning-driven intelligent control for grid integration of renewable resources and help solve the urgent need to integrate more renewable energy into the power grid in the United States. The research repository (data, code, simulations, etc.) generated from the project will be deposited with the digital repository at Texas A&M University-Kingsville and North Carolina A&T State University and ensure that the broader computer science and sustainable energy research community have long-term access for a minimum of three years prescribed by the National Science Foundation. Public-use data files can be accessed directly through the project websites ( https://sites.google.com/view/dr-xingang-fu/home and https://sites.google.com/view/letuqingge/home ) via the digital repository on both campuses. Restricted-use data files are distributed after removing potentially identifying information that would significantly impair the analytic potential of the data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Letu Qingge其他文献
An improved Otsu threshold segmentation algorithm
一种改进的Otsu阈值分割算法
- DOI:
10.1504/ijcse.2020.107266 - 发表时间:
2020 - 期刊:
- 影响因子:2
- 作者:
Pei Yang;Wei Song;Xiaobing Zhao;Rui Zheng;Letu Qingge - 通讯作者:
Letu Qingge
Performance Analysis of Otsu-Based Thresholding Algorithms: A Comparative Study
基于 Otsu 的阈值算法的性能分析:比较研究
- DOI:
10.1155/2021/4896853 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Qinglin Cao;Letu Qingge;Pei Yang - 通讯作者:
Pei Yang
Automatic thresholding using a modified valley emphasis
使用修改后的谷值强调进行自动阈值处理
- DOI:
10.1049/iet-ipr.2019.0176 - 发表时间:
2020 - 期刊:
- 影响因子:2.3
- 作者:
Jiangwa Xing;Pei Yang;Letu Qingge - 通讯作者:
Letu Qingge
Improved U-Net-Like Network for Visual Saliency Detection Based on Pyramid Feature Attention
基于金字塔特征注意力的改进类 U-Net 视觉显着性检测网络
- DOI:
10.1111/mms.12461 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xiaoran Gong;Letu Qingge;Qing Liu;Pei Yang - 通讯作者:
Pei Yang
An improved Otsu threshold segmentation algorithm
一种改进的Otsu阈值分割算法
- DOI:
10.1504/ijcse.2020.107266 - 发表时间:
2020 - 期刊:
- 影响因子:2
- 作者:
Pei Yang;Wei Song;Xiaobing Zhao;Rui Zheng;Letu Qingge - 通讯作者:
Letu Qingge
Letu Qingge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Letu Qingge', 18)}}的其他基金
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
- 批准号:
2307571 - 财政年份:2023
- 资助金额:
$ 13.43万 - 项目类别:
Standard Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318573 - 财政年份:2023
- 资助金额:
$ 13.43万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: HCC: Buenas - Giving All a Seat at the Table Using Mixed Reality
协作研究:CISE-MSI:DP:HCC:布埃纳斯 - 使用混合现实为所有人提供席位
- 批准号:
2318657 - 财政年份:2023
- 资助金额:
$ 13.43万 - 项目类别:
Standard Grant
Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
- 批准号:
2318662 - 财政年份:2023
- 资助金额:
$ 13.43万 - 项目类别:
Standard Grant
Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
- 批准号:
2318663 - 财政年份:2023
- 资助金额:
$ 13.43万 - 项目类别:
Standard Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321531 - 财政年份:2023
- 资助金额:
$ 13.43万 - 项目类别:
Continuing Grant