Collaborative Research: Exploring self-organization of functional nucleic acid supramolecular assemblies with stimuli responsive properties
合作研究:探索具有刺激响应特性的功能性核酸超分子组装体的自组织
基本信息
- 批准号:2204027
- 负责人:
- 金额:$ 27.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is jointly funded by the Biomaterials program and the Established Program to Stimulate Competitive Research (EPSCoR)PART 1: NON-TECHNICAL SUMMARYThe study of ribonucleic acid or RNA is essential for understanding major cellular processes needed for life as well as the origin of various diseases. By using rationally designed RNAs as building blocks, it becomes possible to assemble Nucleic Acid NanoParticles, or NANPs, with pre-defined properties and architectures. The ability to readily respond to changes in biological environments makes biocompatible NANPs an attractive material for clinical use. Also, the biochemical versatility of NANPs can be combined with the optical, electronic, and magnetic properties of inorganic nanomaterials. These augmented NANPs can then be organized into supramolecular assemblies with controlled complexity and functions suitable for a broad range of biomedical, electronic, and imaging applications. However, despite the recent progress, it is still a challenge to engineer sophisticated, responsive, NANP supra-assemblies with regulated morphology. The proposed research program aims to develop a generalizable toolkit for the construction of stimuli-responsive NANP-based materials designed for end users in biotechnology. Building functional NANP supra-assemblies will improve the performance of current therapeutic systems, allow for the engineering of reconfigurable biomaterials, and become instrumental in furthering our understanding of the interactions governing the function of endogenous biomolecules. During this program, the undergraduate and graduate students will receive multidisciplinary training in experimental and computational RNA nanotechnology. This project will also expand the educational domain called ouRNAno that reaches out to and informs the community about recent advances in the field of RNA nanotechnology and will continue cultivating excitement for research through hosting community STEM events with local schools and science museum. PART 2: TECHNICAL SUMMARYRNA nanotechnology benefits from RNA’s ability to assemble through both canonical and non-canonical base pairings that form 12 geometric families. This offers a diverse set of structural and interacting motifs which allow for the construction of Nucleic Acid NanoParticles (NANPs). The versatile biochemistry of NANPs can be combined with the optical, electronic, and magnetic properties of inorganic nanomaterials. The further organization of these augmented NANPs into rationally designed supramolecular assemblies with controlled structural complexity can be used for application in biooptics, design of responsive devices, soft biomimetic machines, tissue mimics, and artificial muscles. Despite the existence of computational tools for NANP design, the use of NANPs as modular building blocks for supramolecular assemblies has never been systematically investigated. Therefore, this research program aims to address this gap in knowledge by developing a generalizable NANP-based programmable platform that simultaneously encodes targeted physicochemical, mechanical, and biological properties through networks of independently programmable architectural parameters. To achieve these goals, the team proposes three main objectives: (i) correlate the programmable parameters of NANPs with the physicochemical and mechanical properties of their supramolecular assemblies; (ii) evaluate the effect of functionalization of individual NANPs with inorganic nanomaterials on the physicochemical and mechanical properties of their supramolecular assemblies; and (iii) investigate the effect of stimuli-dependent kinetic pathways on the properties of functional supramolecular assemblies. This project will substantially advance the framework for the engineering of NANP supra-assemblies as novel stimuli-responsive materials and enable their use in a broad range of biomedical, electronic, and imaging applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由生物材料计划和刺激竞争研究既定计划 (EPSCoR) 联合资助第 1 部分:非技术摘要核糖核酸或 RNA 的研究对于了解生命所需的主要细胞过程以及各种物质的起源至关重要通过使用合理设计的 RNA 作为构建块,可以组装具有预定义属性和结构的核酸纳米粒子 (NANP)。快速响应生物环境变化的能力使生物相容性 NANP 成为临床应用的有吸引力的材料。此外,NANP 的生化多功能性可以与无机纳米材料的光学、电子和磁性特性相结合,然后可以组织这些增强的 NANP。然而,尽管最近取得了进展,但设计复杂的、响应性的 NANP 仍然是一个挑战。拟议的研究计划旨在开发一个通用的工具包,用于构建基于刺激响应的 NANP 材料,为生物技术的最终用户设计,构建功能性 NANP 超组件将提高当前治疗系统的性能,允许可重构生物材料的工程,并有助于进一步了解控制内源生物分子功能的相互作用。在该计划中,本科生和研究生将接受实验和多学科培训。该项目还将扩大名为 ouRNAno 的教育领域,向社区宣传 RNA 纳米技术领域的最新进展,并将通过与当地学校和科学博物馆举办社区 STEM 活动,继续激发人们对研究的兴趣。第 2 部分:技术摘要 RNA 纳米技术受益于 RNA 通过形成 12 个几何家族的规范和非规范碱基配对进行组装的能力,这提供了一组多样化的结构和相互作用基序。允许构建核酸纳米颗粒(NANP)。NANP 的多功能生物化学可以与无机纳米材料的光学、电子和磁性特性相结合。这些增强的 NANP 可以进一步组织成具有受控结构复杂性的合理设计的超分子组件。尽管存在用于 NANP 设计的计算工具,但它可用于生物光学、响应设备设计、软仿生机器、组织模拟物和人造肌肉。使用 NANP 作为超分子组装的模块化构建块从未被系统地研究过,因此,该研究计划旨在通过开发基于 NANP 的通用可编程平台来解决这一知识空白,该平台通过网络同时编码目标物理化学、机械和生物特性。为了实现这些目标,该团队提出了三个主要目标:(i)将 NANP 的可编程参数与其超分子的物理化学和机械特性相关联。组件;(ii)评估单个 NANP 的功能化对其超分子组件的物理化学和机械性能的影响;(iii)研究刺激依赖性动力学途径对功能性超分子组件性能的影响。推进 NANP 超级组件作为新型刺激响应材料的工程框架,并使其能够广泛应用于生物医学、电子和该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexey Krasnoslobodtsev其他文献
Alexey Krasnoslobodtsev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
氟-18标记咪唑啉I2受体显像剂的研究及其在AD早期诊断中的应用探索
- 批准号:22306014
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
染色质重塑子对儿童智力发育障碍的机制研究及诊断标志物探索
- 批准号:82330049
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
基于脑连接组学探索卒中后慢性失语症分类及针刺干预疗效预测的神经影像标记物研究
- 批准号:82374555
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
法医系谱学亲缘关系精细刻画探索研究
- 批准号:82371897
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高管团队深层特征探索研究:认知、关系、价值观
- 批准号:72372001
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 27.07万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347992 - 财政年份:2024
- 资助金额:
$ 27.07万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347991 - 财政年份:2024
- 资助金额:
$ 27.07万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335412 - 财政年份:2024
- 资助金额:
$ 27.07万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346198 - 财政年份:2024
- 资助金额:
$ 27.07万 - 项目类别:
Standard Grant