EAGER: Epidemic Spread Modeling Using Hard Data

EAGER:使用硬数据进行流行病传播建模

基本信息

  • 批准号:
    2130681
  • 负责人:
  • 金额:
    $ 20.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Data-driven prediction models of the spread of COVID-19 are critical for guiding public health policy. Epidemiological models that use as input data in aggregated form can be used for prediction but the granularity of input can limit model usability. Models that are individual-centric are a lot more flexible but require as input the time series of every person's movement within a population: the exact location of each individual, the duration of the individual's stay at the location, and the transition to the next location. Due to privacy issues, accurate data of such granularity are not publicly available. The focus of this project is on the development of a prediction ecosystem that is individual-centric and can be used to foresee the spread of a highly contagious disease within a population that is active within an urban area. Such a model can be used to develop what-if scenarios to mitigate the spread of the disease and can become an indispensable tool for guiding policy decisions in future pandemics. This project will provide a flexible tool for epidemic modeling of COVID-19 and future pandemics. This project advocates the usage of agent-based models as an alternative to machine-learning for accurate prediction of the spread of contagious diseases. The aim is to create a prediction ecosystem for evaluating detailed scenarios: geographical restrictions of mobility, work from home orders/advisories, school closures (and partial openings under different conditions), points of interest operating under various capacities, time in quarantine, and vaccination priority, among others. The above scenarios can be modeled at various levels of detail with the aim to keep the model input small, compact, and flexible, but without compromising its prediction ability. Analysis of the above within the agent-based model setting identifies the most effective yet feasible input abstractions, similar to identifying the importance of feature selection in machine learning models. This tool, driven by anonymized cell-phone data will provide a robust modeling ecosystem that captures the effect of mitigation measures of contagious diseases using stochastic models that are complementary to machine-learning ones. Through this project, undergraduate and graduate students will be trained in the art of applied data science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
COVID-19 传播的数据驱动预测模型对于指导公共卫生政策至关重要。以聚合形式用作输入数据的流行病学模型可用于预测,但输入的粒度可能会限制模型的可用性。以个体为中心的模型更加灵活,但需要输入人口中每个人移动的时间序列:每个人的确切位置、个体在该位置停留的持续时间以及到下一个位置的过渡。由于隐私问题,如此粒度的准确数据无法公开。该项目的重点是开发一个以个人为中心的预测生态系统,可用于预测城市地区活跃人群中高度传染性疾病的传播。这样的模型可以用来制定假设情景,以减轻疾病的传播,并可以成为指导未来大流行的政策决策不可或缺的工具。该项目将为 COVID-19 和未来流行病的流行病建模提供灵活的工具。该项目提倡使用基于代理的模型作为机器学习的替代方案,以准确预测传染病的传播。目的是创建一个预测生态系统,用于评估详细场景:流动性的地理限制、在家工作订单/咨询、​​学校关闭(以及在不同条件下部分开放)、在不同容量下运行的兴趣点、隔离时间和疫苗接种优先权等。上述场景可以在不同的细节级别进行建模,目的是保持模型输入小、紧凑和灵活,但不影响其预测能力。在基于代理的模型设置中对上述内容的分析确定了最有效且可行的输入抽象,类似于确定机器学习模型中特征选择的重要性。该工具由匿名手机数据驱动,将提供一个强大的建模生态系统,使用与机器学习模型互补的随机模型来捕捉传染病缓解措施的效果。通过该项目,本科生和研究生将接受应用数据科学艺术的培训。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Epidemic Spread Modeling for COVID-19 Using Cross-Fertilization of Mobility Data
使用流动性数据的交叉融合进行 COVID-19 流行病传播建模
  • DOI:
    10.1109/tbdata.2023.3248650
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Schmedding, Anna;Pinciroli, Riccardo;Yang, Lishan;Smirni, Evgenia
  • 通讯作者:
    Smirni, Evgenia
GeoSpread: an Epidemic Spread Modeling Tool for COVID-19 Using Mobility Data
GeoSpread:使用移动数据的 COVID-19 流行病传播建模工具
  • DOI:
    10.1145/3524458.3547257
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Schmedding, Anna;Yang, Lishan;Pinciroli, Riccardo;Smirni, Evgenia
  • 通讯作者:
    Smirni, Evgenia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Evgenia Smirni其他文献

Understanding GPU Memory Corruption at Extreme Scale: The Summit Case Study
了解极端规模的 GPU 内存损坏:峰会案例研究

Evgenia Smirni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Evgenia Smirni', 18)}}的其他基金

BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
EAGER: Using Machine Learning to Increase the Operational Efficiency of Large Distributed Systems
EAGER:利用机器学习提高大型分布式系统的运营效率
  • 批准号:
    1649087
  • 财政年份:
    2016
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
SHF-Small: Robust Methodologies for Effective Data Center Management
SHF-Small:有效数据中心管理的稳健方法
  • 批准号:
    1218758
  • 财政年份:
    2012
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
CPA-ACR-CSA: Effective Resource Allocation under Temporal Dependence
CPA-ACR-CSA:时间依赖性下的有效资源分配
  • 批准号:
    0811417
  • 财政年份:
    2008
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
CSR-SMA: Autocorrelated Flows in Systems: Analytic Models and Applications
CSR-SMA:系统中的自相关流:分析模型和应用
  • 批准号:
    0720699
  • 财政年份:
    2007
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
ITR-(ASE)-(dmc+int): Reconfigurable, Data-driven Resource Allocation in Complex Systems: Practice and Theoretical Foundations
ITR-(ASE)-(dmc int):复杂系统中可重构、数据驱动的资源分配:实践和理论基础
  • 批准号:
    0428330
  • 财政年份:
    2004
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Effective Techniques and Tools for Resource Management in Clustered Web Servers
集群Web服务器资源管理的有效技术和工具
  • 批准号:
    0098278
  • 财政年份:
    2001
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: Adaptive Data Parallel Storage
协作研究:自适应数据并行存储
  • 批准号:
    0090221
  • 财政年份:
    2001
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
Next Generation Software: Coordinated Allocation of Processor and I/O Resources in Parallel Systems
下一代软件:并行系统中处理器和 I/O 资源的协调分配
  • 批准号:
    9974992
  • 财政年份:
    1999
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant

相似国自然基金

流行性乙型脑炎减毒活疫苗诱导的交叉反应性T细胞和IgG抗体在寨卡病毒垂直传播中的作用及其机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于时空变迁分析和自然疫源地调查的甘肃省流行性乙型脑炎传播风险预测研究
  • 批准号:
    82060614
  • 批准年份:
    2020
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
贸易、疾病与经济发展:基于近代中国流行性鼠疫空间扩散的理论及实证研究
  • 批准号:
    71773070
  • 批准年份:
    2017
  • 资助金额:
    47.0 万元
  • 项目类别:
    面上项目
三带喙库蚊传播流行性乙型脑炎风险的时空生态学研究
  • 批准号:
    81072349
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
蝙蝠在流行性乙型脑炎传播环中的作用探讨
  • 批准号:
    30972525
  • 批准年份:
    2009
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding Stochastic Spatiotemporal Dynamics of Epidemic Spread to Improve Control Interventions - From COVID-19 to Future Pandemics
合作研究:了解流行病传播的随机时空动态以改进控制干预措施 - 从 COVID-19 到未来的大流行
  • 批准号:
    2140420
  • 财政年份:
    2022
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Stochastic Spatiotemporal Dynamics of Epidemic Spread to Improve Control Interventions - From COVID-19 to Future Pandemics
合作研究:了解流行病传播的随机时空动态以改进控制干预措施 - 从 COVID-19 到未来的大流行
  • 批准号:
    2140405
  • 财政年份:
    2022
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Stochastic Spatiotemporal Dynamics of Epidemic Spread to Improve Control Interventions - From COVID-19 to Future Pandemics
合作研究:了解流行病传播的随机时空动态以改进控制干预措施 - 从 COVID-19 到未来的大流行
  • 批准号:
    2140441
  • 财政年份:
    2022
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Coupling and spread of molecular and functional pathology of Alzheimer's disease
阿尔茨海默病分子和功能病理学的耦合和传播
  • 批准号:
    10217616
  • 财政年份:
    2021
  • 资助金额:
    $ 20.57万
  • 项目类别:
Direction of flame spread over a combustible solid near extinction limit
火焰在接近熄灭极限的可燃固体上蔓延的方向
  • 批准号:
    20K05001
  • 财政年份:
    2020
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了