CAS-Climate: Atomically Resolved Single-Molecule Microscopy of Catalytic Intermediates in CO2 Reduction

CAS-Climate:二氧化碳还原催化中间体的原子分辨单分子显微镜

基本信息

  • 批准号:
    2203589
  • 负责人:
  • 金额:
    $ 47.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

With support from the Chemical Measurement and Imaging (CMI) Program in the Division of Chemistry, a research team led by Professors Udo Schwarz and Eric Altman at Yale University is using a combination of scanning probe microscopy (SPM) methods and theory to obtain a detailed picture of the interaction between carbon monoxide (CO) and the single-molecule catalyst cobalt phthalocyanine (CoPc). The project will examine how new imaging capabilities can be used to probe the roles of surface interactions and of substituent groups on the CoPc catalysts in order to adjust the adsorption strength of CO, a key intermediate in the reduction and conversion of CO2 to methanol. This research is designed to address issues related to climate change by contributing to the creation of a reliable, carbon-neutral energy supply based on the catalytic conversion of CO2 into methanol. Methanol is a commodity chemical that can readily be stored and transported and either used as fuel directly or converted into other liquid fuels such as diesel, gasoline, or aviation kerosene. Recent work at Yale has identified immobilized CoPc molecules as a promising platform for promoting selective CO2 conversion to methanol, but little is known about how to optimize the activity, selectivity, and stability of this potential catalyst. Therefore, the research team is developing a chemical imaging approach to show how individual CoPc molecules interact with the supporting surface and with key intermediate species in the CO2 reduction process, including CO. The work has the potential to provide new methods for optimizing these interactions by tuning substituent groups on the CoPc catalyst. The detailed molecular-level understanding that emerges from this effort could lead to improvements in electrocatalytic performance. In addition to broader impacts related to the mitigation of climate change, the project will provide advanced student training opportunities in state-of-the-art imaging methods and supports outreach activities for the general public.The reduction of CO2 involves generating CO as an intermediate, therefore efficient methanol production requires that CO binding to the cobalt atom in CoPc is neither too strong nor too weak. Although CO binding can likely be fine-tuned by changing the catalyst structure, current spectroscopic methods are inadequate for understanding CO binding strength on a single-molecule basis. To alleviate this shortcoming, the research team uses advanced scanning probe microscopy methods to locally measure the CO adsorption strength as a function of catalyst structure and support, with the goal of enabling rational catalyst optimization. Key to the project are recent advances in SPM that provide the ability to image molecular structures, distinguish bond orders, and measure small distortions in molecular structures as electrons are injected into molecules using non-contact atomic force microscopy (NC-AFM) with CO-functionalized tips. For complementary information, results from NC-AFM imaging are combined with the measurement of local work function variations obtained by Kelvin probe microscopy and the electronic structure obtained through tunneling spectroscopy, which allow mapping of the positions of the highest occupied and lowest unoccupied molecular orbitals, total charge densities, and electron transfer to and from the support. As the third major element of this effort, scanning tunneling microscopy-based action spectroscopy should enable quantification on an individual molecule basis of how supports, adsorption sites and geometries, and substituent groups influence the adsorption of reactive intermediates in the conversion of CO2 to liquid fuelsThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学测量和成像 (CMI) 项目的支持下,由耶鲁大学 Udo Schwarz 和 Eric Altman 教授领导的研究小组正在结合扫描探针显微镜 (SPM) 方法和理论来获得详细的一氧化碳 (CO) 与单分子催化剂酞菁钴 (CoPc) 之间的相互作用图片。该项目将研究如何使用新的成像功能来探测 CoPc 催化剂上表面相互作用和取代基的作用,以调整 CO 的吸附强度,CO 是二氧化碳还原和转化为甲醇的关键中间体。这项研究旨在通过将二氧化碳催化转化为甲醇来创建可靠的碳中性能源供应,从而解决与气候变化相关的问题。甲醇是一种商品化学品,易于储存和运输,可直接用作燃料或转化为其他液体燃料,如柴油、汽油或航空煤油。耶鲁大学最近的研究发现,固定化 CoPc 分子是促进二氧化碳选择性转化为甲醇的有前景的平台,但人们对如何优化这种潜在催化剂的活性、选择性和稳定性知之甚少。因此,研究小组正在开发一种化学成像方法,以显示单个 CoPc 分子如何与支撑表面以及 CO2 还原过程中的关键中间物质(包括 CO)相互作用。这项工作有可能为优化这些相互作用提供新方法:调整CoPc催化剂上的取代基。这项工作产生的详细的分子水平理解可能会导致电催化性能的改进。除了与减缓气候变化相关的更广泛影响外,该项目还将为学生提供最先进成像方法的高级培训机会,并支持公众的外展活动。二氧化碳的减少涉及产生二氧化碳作为中间体,因此高效的甲醇生产要求 CO 与 CoPc 中钴原子的结合既不太强也不太弱。尽管可以通过改变催化剂结构来微调CO结合,但目前的光谱方法不足以了解单分子基础上的CO结合强度。为了缓解这一缺点,研究团队使用先进的扫描探针显微镜方法来局部测量CO吸附强度作为催化剂结构和载体的函数,以实现合理的催化剂优化。该项目的关键是 SPM 的最新进展,它提供了对分子结构进行成像、区分键序以及使用 CO-非接触式原子力显微镜 (NC-AFM) 将电子注入分子时测量分子结构中微小变形的能力。功能化提示。作为补充信息,NC-AFM 成像的结果与开尔文探针显微镜获得的局部功函数变化的测量以及通过隧道光谱获得的电子结构相结合,从而可以绘制最高占据和最低未占据分子轨道的位置,总电荷密度,以及往返于载体的电子转移。作为这项工作的第三个主要要素,基于扫描隧道显微镜的作用光谱应该能够在单个分子的基础上量化载体、吸附位点和几何形状以及取代基如何影响二氧化碳转化为液体燃料过程中反应中间体的吸附。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Udo Schwarz其他文献

Udo Schwarz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Udo Schwarz', 18)}}的其他基金

Unraveling the Fundamental Mechanisms of Nanoscale Deformation in Bulk Metallic Glasses
揭示块状金属玻璃纳米级变形的基本机制
  • 批准号:
    1901959
  • 财政年份:
    2019
  • 资助金额:
    $ 47.39万
  • 项目类别:
    Standard Grant
Chemical Imaging of Elementary Steps in Hydrogenation Reactions of Surfaces
表面氢化反应基本步骤的化学成像
  • 批准号:
    1808422
  • 财政年份:
    2018
  • 资助金额:
    $ 47.39万
  • 项目类别:
    Continuing Grant
Chemical Imaging of Elementary Steps in Hydrogenation Reactions of Surfaces
表面氢化反应基本步骤的化学成像
  • 批准号:
    1608568
  • 财政年份:
    2016
  • 资助金额:
    $ 47.39万
  • 项目类别:
    Standard Grant
Materials World Network: Mapping Oxide Surface Reactivity Through Spacially-Resolved Atomic Interaction Forces
材料世界网络:通过空间分辨原子相互作用力绘制氧化物表面反应性
  • 批准号:
    0806893
  • 财政年份:
    2008
  • 资助金额:
    $ 47.39万
  • 项目类别:
    Continuing Grant
IMR: Development of a Variable Temperature/Variable Magnetic Field Scanning Force Microscope and Student Training
IMR:变温/变磁场扫描力显微镜的开发和学生培训
  • 批准号:
    0414944
  • 财政年份:
    2004
  • 资助金额:
    $ 47.39万
  • 项目类别:
    Standard Grant

相似国自然基金

气候梯度下云南典型草地土壤微生物群落调控碳利用效率机制的研究
  • 批准号:
    32301439
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
季风边缘带树轮记录的800年关键水文气候要素响应与重构
  • 批准号:
    52379015
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
气候变化下南中国海海洋动力要素预测及其对珊瑚礁海岸洪水风险的影响研究
  • 批准号:
    42376201
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
气候变化下南中国海海洋动力要素预测及其对珊瑚礁海岸洪水风险的影响研究
  • 批准号:
    42376201
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
  • 批准号:
    42371397
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目

相似海外基金

Store Electricity and Heat foR climatE Neutral Europe (SEHRENE)
为欧洲气候中和储存电力和热能 (SEHRENE)
  • 批准号:
    10105664
  • 财政年份:
    2024
  • 资助金额:
    $ 47.39万
  • 项目类别:
    EU-Funded
Advancing Governance and Resilience for Climate Adaptation through Cultural Heritage (AGREE)
通过文化遗产促进气候适应的治理和抵御能力(同意)
  • 批准号:
    AH/Z000017/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.39万
  • 项目类别:
    Research Grant
Multiscale Approaches And Scalability Within Climate Change-heritage Risk Assessments
气候变化遗产风险评估中的多尺度方法和可扩展性
  • 批准号:
    AH/Z000084/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.39万
  • 项目类别:
    Research Grant
Identifying potential trade-offs of adapting to climate change
确定适应气候变化的潜在权衡
  • 批准号:
    DP240100230
  • 财政年份:
    2024
  • 资助金额:
    $ 47.39万
  • 项目类别:
    Discovery Projects
Advancing Child and Youth-led Climate Change Education with Country
与国家一起推进儿童和青少年主导的气候变化教育
  • 批准号:
    DP240100968
  • 财政年份:
    2024
  • 资助金额:
    $ 47.39万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了