Collaborative Research: Single Photon Emission in Lanthanide-Doped 2D Materials & Devices
合作研究:稀土掺杂二维材料中的单光子发射
基本信息
- 批准号:2202280
- 负责人:
- 金额:$ 30.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Technologies are being developed at a much greater pace than ever using the quantum properties of materials. These peculiar behaviors, which for many decades were just an intellectual curiosity, are now set to transform the technologies we use in our daily lives. At the forefront of this is the development of light sources that can produce individual photons “on demand”, known as single-photon emitters (SPE). Rare-earth elements, such as cerium and erbium, embedded into two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS2), could enable a quantum optical platform that matches the requirements for direct insertion into traditional optical communication infrastructure. Therefore, the principal investigators will evaluate the impact of incorporating rare-earth elements into 2D semiconductors and explore how to tune their properties for controllable light generation. Beyond the scientific impact, this collaborative project will provide interdisciplinary research training for female and underrepresented minority graduate students, which directly impacts the need to broaden participation in STEM programs. Finally, this program will enable them to participate in a range of outreach activities that connect their research and training to the educational mission of the Universities.Technical Description. Quantum communication technologies are advancing at a continually increasing pace and are now set to transform the technologies we use in our daily lives. A key building block for this advancement is the single-photon emitter (SPE). Solid-state SPEs based on point defects, especially those with energies that match telecommunication requirements (i.e., near infrared (NIR): 1320-1550 nm), could dramatically change how we connect to one another in the future. The utilization of lanthanide (Ln) (rare-earth) elements as SPEs could enable a quantum optical platform that matches the requirements for direct insertion into traditional optical communication infrastructure. The principal investigators will employ a closely coupled combination of experimental methods to understand light emission from Ln-doped 2D semiconductor structures. They will evaluate the impact of 2D/substrate interface properties, element choice, and compound transformation processes on the 2D photonic and electronic properties through a series of interlocking objectives that include controlled doping of Ln elements in semiconducting 2D materials and correlating this with atomic-scale structural defects, semiconductor band structure, optical emission, and charge transport properties. Ultimately, the project aims to demonstrate electrically driven SPE devices based on Ln-doped 2D layer p/n homojunctions and benchmark optoelectronic performance. The success of this work will establish an understanding of the physical phenomena that enables controlled optical emission in 2D layers in the NIR, laying the groundwork for engineered 2D photonic crystals that are compatible with current semiconductor fabrication and optical communication technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
利用材料的量子特性,技术的发展速度比以往任何时候都快得多。这些奇特的行为几十年来只是一种智力上的好奇心,现在将改变我们日常生活中使用的前沿技术。这是一种可以“按需”产生单个光子的光源的开发,称为单光子发射器(SPE),将稀土元素(例如铈和铒)嵌入到二维(2D)半导体中,例如二硫化钼(MoS2)可以使量子光学平台满足直接插入传统光通信基础设施的要求,因此,主要研究人员将评估将稀土元素纳入二维半导体的影响,并探索如何调整其性能。除了科学影响之外,该合作项目还将为女性和代表性不足的少数族裔研究生提供跨学科研究培训,这直接影响了扩大 STEM 项目参与的需求。一系列外展活动将他们的研究和培训与大学的教育使命联系起来。技术描述量子通信技术正在以不断加快的速度发展,现在将成为改变我们日常生活中使用的技术的一个关键组成部分。实现这一进步的是基于点缺陷的单光子发射器 (SPE),特别是那些能量符合电信要求的发射器(即近红外 (NIR):1320-1550)。 nm),可能会极大地改变我们未来相互连接的方式。利用镧系元素(Ln)(稀土)作为 SPE 可以实现一种符合直接插入传统光通信基础设施要求的量子光学平台。主要研究人员将采用紧密结合的实验方法来了解 Ln 掺杂二维半导体结构的光发射,他们将评估二维/衬底界面特性、元素选择和化合物转变过程对二维光子和电子特性的影响。通过一系列相互关联的目标,包括在半导体二维材料中控制 Ln 元素的掺杂,并将其与原子级结构缺陷、半导体能带结构、光发射和电荷传输特性相关联,最终,该项目旨在演示电驱动的 SPE 设备。基于 Ln 掺杂 2D 层 p/n 同质结和基准光电性能这项工作的成功将建立对物理现象的理解,从而实现二维层中的受控光发射。 NIR,为与当前半导体制造和光通信技术兼容的工程二维光子晶体奠定了基础。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Robinson其他文献
The Data Acquisition System of the KOTO Experiment and the RCE Platform Technology Upgrade
KOTO实验数据采集系统及RCE平台技术升级
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:1.8
- 作者:
S. Su;J. Ameel;J. Beechert;M. Campbell;C. Gee;M. Huff;J. Micallef;Joshua Robinson;Christopher Rymph;H. Schamis;M. Taylor;M. Tecchio;N. Whallon;Jia Xu;Y. Sugiyama;Y. Tajima;M. Bogdan;Y. Wah - 通讯作者:
Y. Wah
Macular Development in Aggressive Posterior Retinopathy of Prematurity
早产儿侵袭性后部视网膜病变的黄斑发育
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
H. Pandya;L. Faia;Joshua Robinson;K. Drenser - 通讯作者:
K. Drenser
Clinical Correlation between Acute Exudative Polymorphous Paraneoplastic Vitelliform Maculopathy and Metastatic Melanoma Disease Activity: A 48-month Longitudinal Case Report
急性渗出性多形性副肿瘤性黄斑病与转移性黑色素瘤疾病活动之间的临床相关性:48 个月的纵向病例报告
- DOI:
10.1080/09273948.2020.1813782 - 发表时间:
2020 - 期刊:
- 影响因子:3.3
- 作者:
C. Mueller;Sara L. Hojjatie;D. Lawson;Nieraj Jain;Joshua Robinson;Mohammad K. Khan;M. Yushak;Ghazala D. O’Keefe - 通讯作者:
Ghazala D. O’Keefe
The data acquisition system of the KOTO experiment and RPT upgrade
KOTO实验数据采集系统及RPT升级
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
S. Su;J. Ameel;J. Beechert;M. Bogdan;M. Campbell;C. Gee;M. Huff;J. Micallef;Joshua Robinson;Christopher Rymph;H. Schamis;Y. Sugiyama;Y. Tajima;M. Tecchio;N. Whallon;Y. Wah;Jia Xu - 通讯作者:
Jia Xu
High-quality, large-grain MoS2 films grown on 100 mm sapphire substrates using a novel molybdenum precursor
使用新型钼前驱体在 100 mm 蓝宝石衬底上生长高质量、大晶粒 MoS2 薄膜
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
P. Quayle;Bin Zhang;J. Leach;B. Bersch;Joshua Robinson;S. Pacley - 通讯作者:
S. Pacley
Joshua Robinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Robinson', 18)}}的其他基金
Collaborative Research: Atomically thin topological insulators via confinement heteroepitaxy
合作研究:通过限制异质外延制备原子薄拓扑绝缘体
- 批准号:
2002651 - 财政年份:2020
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
2019 US-EU Workshop on 2D Materials. To Be Held In State College PA, May 9-10, 2019.
2019 年美国-欧盟二维材料研讨会。
- 批准号:
1933334 - 财政年份:2019
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
CAREER: Atomic Scale Design of van der Waals Heterostructure Nanoribbons
职业:范德华异质结构纳米带的原子尺度设计
- 批准号:
1453924 - 财政年份:2015
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
EFRI 2-DARE: Ultra-Low Power, Collective-State Device Technology Based on Electron Correlation in Two-Dimensional Atomic Layers
EFRI 2-DARE:基于二维原子层电子关联的超低功耗集体态器件技术
- 批准号:
1433307 - 财政年份:2014
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
相似国自然基金
酵母RNase MRP的结构及催化机制研究
- 批准号:31900929
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
- 批准号:31900571
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
亚纳米单分子定位技术研究化学修饰对蛋白-膜相互作用的干预
- 批准号:91753104
- 批准年份:2017
- 资助金额:70.0 万元
- 项目类别:重大研究计划
基于Single Cell RNA-seq的斑马鱼神经干细胞不对称分裂调控机制研究
- 批准号:31601181
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
- 批准号:
2411394 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant