Adaptive Physics-informed Machine Learning Strategies for Turbulent Combustion Modeling

用于湍流燃烧建模的自适应物理学机器学习策略

基本信息

  • 批准号:
    2201297
  • 负责人:
  • 金额:
    $ 27.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The design and optimization of combustion devices is crucial in the mission to combat climate change and achieve national security goals. Simulations can play a role in this mission by enabling rapid virtual testing of combustors at various design configurations, so that promising designs can be selected for physical prototyping. However, turbulent combustion simulations involve solving for a large number of molecular species that are produced and consumed as part of the combustion process. Due to this, combustion simulations require the use of many computer processors for several hours on supercomputers or compute clusters. This limits the usefulness of promising computer models for practical design and optimization endeavors. This work contributes to the ongoing quest to develop reduced combustion models that decrease the simulation times and required computing resources, yet preserve accuracy.In response to the excessive computational costs of turbulent combustion, physics-based reduced-order models have been introduced. These models often solve chemistry in an “offline” phase, store the solution in a table, and then interpolate the table’s entries to retrieve the chemical state during the “online” phase. The use of these lookup tables, however, suffers from the curse of dimensionality, wherein the size of the table and the interpolation complexities increase exponentially with the number of control variables. As a result, these lookup tables are limited to situations that employ a few control variables, thus preventing their application to many practical combustion devices. This work aims to address this problem by developing machine learning strategies to efficiently learn combustion physics within physically derived low-dimensional manifolds. This will be achieved by introducing machine learning models that are adaptive, consistent with the underlying physical laws, and suitable for high-dimensional combustion state spaces. This work will enable simulations at levels of fidelity that are currently impossible to perform using traditional tabulation techniques, and therefore, will aid in the design and development of clean and efficient combustion technologies. Furthermore, the tools developed in this study will be vital to the broad area of scientific machine learning, which continues to have an increasingly important impact on the modeling of many physical systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对抗气候变化并实现国家安全性的任务至关重要,通过实现燃烧和各种设计配置或物理原型的虚拟测试来发挥作用。分子镜头sphat AR作为燃烧过程的一部分。 - 模型已经在平板电脑中的“离线” E解决方案中解决了化学,这是在“在线”阶段回收到化学雕像的条目尺寸轻松,这些查找表的数量限制为使用少数控制策略机器学习模型是自适应的,是基本的物理定律,适用于不可能使用传统技术进行的忠诚度的高度燃烧状态。在许多物理系统的建模上都很重要。该奖项反映了NSF的使命,并且通过使用Toundation的知识分子优点和更广泛的影响评估标准来评估值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ope Owoyele其他文献

Ope Owoyele的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

利用物理模型研究三维细胞迁移与复杂胞外基质的关系
  • 批准号:
    12374213
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于射频指纹物理特征的低轨卫星物联网增强安全认证技术研究
  • 批准号:
    62302082
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
氧化/还原助剂修饰CdS用于光催化分解H2S制氢的超快光物理机理研究
  • 批准号:
    22311530118
  • 批准年份:
    2023
  • 资助金额:
    37 万元
  • 项目类别:
    国际(地区)合作与交流项目
物理-数据混合驱动的复杂曲面多模态视觉检测理论与方法
  • 批准号:
    52375516
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
周边与中央视觉拥挤效应的心理物理学与脑机制研究及临床应用
  • 批准号:
    32371097
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Standard Grant
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
  • 批准号:
    EP/Y027930/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Fellowship
Discovering early biomarkers of Alzheimer's disease using genetic and physics-informed networks
利用遗传和物理信息网络发现阿尔茨海默病的早期生物标志物
  • 批准号:
    2904538
  • 财政年份:
    2024
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Studentship
CAREER: Physics-Informed Deep Learning for Understanding Earthquake Slip Complexity
职业:基于物理的深度学习用于理解地震滑动的复杂性
  • 批准号:
    2339996
  • 财政年份:
    2024
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Continuing Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了