FW-HTF-R: Human-Machine Teaming for Effective Data Work at Scale: Upskilling Defense Lawyers Working with Police and Court Process Data
FW-HTF-R:大规模有效数据工作的人机协作:提高辩护律师处理警察和法院流程数据的技能
基本信息
- 批准号:2129008
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will build tools to help defense attorneys do their work -- in particular, to help them use and understand the large quantities of data that they are now asked to handle. As more and more data about policing, courts, and individual cases becomes available, attorneys are finding that the evidence they need to advocate for their clients is locked in vast piles of messy, incomplete data. With the relevant information scattered across scans of hundreds of pages of paper forms or hours of audio and video, defenders do not have the programming and data analysis skills they need to extract key information from the public and private data at their disposal. This leaves defense attorneys at a disadvantage, particularly public defenders who have limited access to staff with data analysis expertise and who face high caseloads that leave them limited time to learn data analysis. To help address this gap, the project team will partner with legal associations and defense attorneys to develop data analysis methods and tools that do much of the work of collecting, organizing, and suggesting analyses of these messy police and court process data. Doing this will reduce the burden for defense attorneys, increase the value of data, and ultimately lead to fairer, better outcomes in criminal justice contexts.This project's data platform will leverage three key underlying techniques the project team will advance: (i) familiar no-code and low-code modalities like natural language search boxes and spreadsheet interfaces; (ii) program synthesis and machine learning to transform "fuzzy" queries in no-code interfaces into a space of possible interpretations (including improving predictions by generalizing from prior tool usage data); and (iii) interactive ambiguity resolution widgets that present visual representations of output data, allowing users to steer the tool towards their target programs or analyses by disambiguating between alternatives generated in (ii). In developing this platform, the team will contribute advances in program synthesis and ML-aided program generation, including novel algorithms for synthesis; develop novel mechanisms and algorithms for learning from users' prior activity in the context of data work tools; and invent new program recommendation algorithms, especially for recommending plausible tweaks to existing data analysis programs. These techniques will be incorporated into a larger user-centered design process toward building tools and interfaces that meet public defenders’ needs and take into account the legal context and constraints in which they work. The tools will be iteratively developed and evaluated among an increasingly large set of users, starting with individual defenders and public defenders’ offices, with the goal of producing off-the-shelf solutions that can be adopted by a range of legal entities and organizations. Together, the work will contribute to knowledge of how to build no-code and low-code tools to democratize data access more broadly.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将构建工具来帮助国防部门完成工作,特别是帮助他们使用和理解现在需要处理的大量数据,因为有关警务、法院和个案的数据越来越多。不幸的是,他们发现他们为客户辩护所需的证据被锁在大量杂乱、不完整的数据中,相关信息分散在数百页纸质表格或数小时音频和视频的扫描中,辩护者没有这些信息。他们从数据中提取关键信息所需的编程和数据分析技能这使得辩护投诉处于不利地位,特别是公设辩护人接触到具有数据分析专业知识的工作人员的机会有限,而且面临大量案件,导致他们学习数据分析的时间有限。项目团队将与法律协会和辩护诉讼合作开发数据分析方法和工具,以完成对这些混乱的警察和法庭流程数据的收集、组织和建议分析的大部分工作,这样做将减轻辩护抗辩的负担。 ,增加数据的价值,最终导致更公平,该项目的数据平台将利用项目团队将推进的三项关键基础技术:(i) 熟悉的无代码和低代码模式,如自然语言搜索框和电子表格界面;(ii) 程序合成和机器学习将无代码界面中的“模糊”查询转换为可能的解释空间(包括通过归纳先前的工具使用数据来改进预测);以及(iii)交互式歧义解决小部件,呈现输出数据的视觉表示,从而允许用户通过消除 (ii) 中生成的替代方案之间的歧义,引导工具实现目标程序或分析。 在开发该平台时,团队将在程序合成和机器学习辅助程序生成方面做出贡献,包括开发新的机制和新的算法;在数据工作工具的背景下从用户先前的活动中学习的算法;并发明新的程序推荐算法,特别是对现有数据分析程序提出合理的调整这些技术将被纳入到构建工具的更大的以用户为中心的设计过程中。以及满足公设辩护人需求的界面这些工具将从个人辩护人和公设辩护人办公室开始,在越来越多的用户中进行迭代开发和评估,目的是生成现成的工具。这项工作将共同帮助人们了解如何构建无代码和低代码工具以更广泛地实现数据访问民主化。该奖项反映了 NSF 的法定使命,并具有广泛的影响力。通过评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Need-Finding Study with Users of Geospatial Data
地理空间数据用户的需求调查研究
- DOI:10.1145/3544548.3581370
- 发表时间:2023-04-19
- 期刊:
- 影响因子:0
- 作者:Parker Ziegler;Sarah E. Chasins
- 通讯作者:Sarah E. Chasins
Co-Designing for Transparency: Lessons from Building a Document Organization Tool in the Criminal Justice Domain
共同设计透明度:在刑事司法领域构建文档组织工具的经验教训
- DOI:10.1145/3593013.3594093
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Nigatu, Hellina Hailu;Pickoff;Canny, John;Chasins, Sarah
- 通讯作者:Chasins, Sarah
Trial by File Formats: Exploring Public Defenders' Challenges Working with Novel Surveillance Data
按文件格式进行审判:探索公设辩护人在使用新监控数据时面临的挑战
- DOI:10.1145/3512914
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Warren, Rachel B.;Salehi, Niloufar
- 通讯作者:Salehi, Niloufar
Exploring the Learnability of Program Synthesizers by Novice Programmers
探索新手程序员对程序合成器的学习能力
- DOI:10.1145/3526113.3545659
- 发表时间:2022-10-28
- 期刊:
- 影响因子:0
- 作者:Dhanya Jayagopal;Justin Lubin;Sarah E. Chasins
- 通讯作者:Sarah E. Chasins
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aditya Parameswaran其他文献
MIT Open Access Articles Towards Visualization Recommendation Systems
麻省理工学院面向可视化推荐系统的开放获取文章
- DOI:
10.1109/access.2022.3159976 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:3.9
- 作者:
Manasi Vartak;Silu Huang;Tarique Siddiqui;Samuel Madden;Aditya Parameswaran - 通讯作者:
Aditya Parameswaran
Automatic email response suggestion for support departments within a university
为大学内的支持部门提供自动电子邮件回复建议
- DOI:
10.7287/peerj.preprints.26531v1 - 发表时间:
2018-02-17 - 期刊:
- 影响因子:0
- 作者:
Aditya Parameswaran;D. Mishra;Sanchit Bansal;Vinayak Agarwal;Anjali Goyal;A. Sureka - 通讯作者:
A. Sureka
Aditya Parameswaran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aditya Parameswaran', 18)}}的其他基金
CAREER: Advancing Open-Ended Crowdsourcing: The Next Frontier in Crowdsourced Data Management
职业:推进开放式众包:众包数据管理的下一个前沿
- 批准号:
1940757 - 财政年份:2019
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
1940759 - 财政年份:2019
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
1733878 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
CAREER: Advancing Open-Ended Crowdsourcing: The Next Frontier in Crowdsourced Data Management
职业:推进开放式众包:众包数据管理的下一个前沿
- 批准号:
1652750 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: DataHub - A Collaborative Dataset Management Platform for Data Science
III:媒介:协作研究:DataHub - 数据科学协作数据集管理平台
- 批准号:
1513407 - 财政年份:2015
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
相似国自然基金
有机工质-导热油ORC直接接触式蒸汽发生器湍流破碎与强化换热协同耦合机制研究
- 批准号:51706195
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
纳米流体在太阳能中温集热过程的辐射吸收特性与传热机理研究
- 批准号:51206027
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于共晶盐与导热油直接接触换热的高效储热机理
- 批准号:51106185
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
转HTFα对脊髓继发性损伤和微循环重建的影响
- 批准号:39970755
- 批准年份:1999
- 资助金额:13.0 万元
- 项目类别:面上项目
相似海外基金
FW-HTF-RL: Success via a Human-Assistive Wearable Technology Partnership Fostering Neurodiverse Individuals' Work Success via an Assistive Wearable Technology
FW-HTF-RL:通过人类辅助可穿戴技术合作伙伴关系取得成功通过辅助可穿戴技术促进神经多样性个体的工作成功
- 批准号:
2326270 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
FW-HTF-RL: Success via a Human-Assistive Wearable Technology Partnership Fostering Neurodiverse Individuals' Work Success via an Assistive Wearable Technology
FW-HTF-RL:通过人类辅助可穿戴技术合作伙伴关系取得成功通过辅助可穿戴技术促进神经多样性个体的工作成功
- 批准号:
2326270 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
- 批准号:
2326160 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
- 批准号:
2326159 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-P: Efficient Inspection of Unpiggable Pipelines through Human-Robot Integration
合作研究:FW-HTF-P:通过人机集成有效检查不可清管的管道
- 批准号:
2222635 - 财政年份:2022
- 资助金额:
$ 200万 - 项目类别:
Standard Grant