The Non-Commutative Hodge Conjecture and Multiplicities of Modules and Complexes

非交换霍奇猜想以及模和复形的重数

基本信息

  • 批准号:
    2200732
  • 负责人:
  • 金额:
    $ 28.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This research project concerns topics in commutative and homological algebra and related fields. In commutative algebra, one studies formal systems in which the rules for manipulating equations are the same as in high school algebra but done in more general settings. The field is related to many other areas of pure mathematics, such as number theory, the study of properties of the integers, and algebraic geometry, the study of geometric properties of solutions to systems of polynomial equations. Homological algebra is a branch of algebra related to the field of algebraic topology and is the study of topological spaces, that is, "shapes." A central object of study in homological algebra is that of a complex of modules, which can be thought of an abstraction of the notion of a topological space. This project aims to settle various open conjectures, including one on the possible values of Euler characteristics of certain types of complexes. Here, the Euler characteristic of a complex is a generalization of the integer invariant for polyhedra. The grant will also support graduate students working on affiliated topics.The project involves four main topics: (1) lengths of modules of finite projective dimension and Dutta multiplicities of "tiny complexes," (2) Ulrich modules and lim Ulrich sequences of modules, (3) cones of Betti tables and cohomology tables, (4) the nc-Hodge-conjecture for matrix factorizations. The central goal of (1) is to prove the conjecture that a module of finite projective dimension over a local ring must have length at least as large as the multiplicity of the module. This conjecture admits a generalization involving Euler and Dutta multiplicities of "tiny complexes". Part (2) concerns a primary tool used in tackling these conjectures: Ulrich modules, which are maximal Cohen-Macaulay modules whose multiplicities equal their minimal numbers of generates, and lim Ulrich sequences of modules—sequences of modules that asymptotically approximate the former. The central goal is to construct such things for a larger class of rings than previously known. Part (3) concerns the cones of Betti tables of modules over local rings and cones of cohomology tables of coherent sheaves on projective varieties. Ulrich sheaves and lim Ulrich sequences of sheaves—sheaf theoretic analogues of the module versions of these notions—play an essential role here. The central aim of Part (4) is to prove the non-commutative analogue of the classical Hodge conjecture for the category of matrix factorizations of a hypersurface with an isolated singularity. Each part will be pursued in collaboration with other researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目涉及交换和同源代数及相关领域的主题。在交换代数中,一种研究正式系统,其中操纵方程的规则与高中代数相同,但在更一般的环境中进行。该领域与纯数学的许多其他领域有关,例如数字理论,整数的性质研究以及代数几何,对多项式方程系统解决方案的几何特性的研究。同源代数是与代数拓扑领域相关的代数分支,并且是对拓扑空间的研究,即“形状”。同源代数研究的一个核心对象是一个模块的复合物,可以认为拓扑空间的概念的抽象。该项目旨在解决各种开放式猜想,其中包括某些类型的复合物的Euler特征的可能值。在这里,复合物的Euler特征是多面体整数不变的概括。 The grant will also support graduate students working on affiliate topics.The project involves four main topics: (1) lengths of modules of finite projective dimension and Dutta multiples of "tiny complexes," (2) Ulrich modules and lim Ulrich sequences of modules, (3) cones of Betti tables and cohomology tables, (4) the nc-Hodge-conjecture for matrix factors. (1)的中心目标是证明一个概念,即在本地环上的有限射击尺寸模块必须具有至少与模块的多重性一样大的概念。这种猜想承认了涉及“小复合物”的欧拉和杜塔倍数的概括。第(2)部分涉及用于解决这些概念的主要工具:Ulrich模块,这些模块是最大的Cohen-Macaulay模块,其倍数等于其最小生成数量和Lim Ulrich模块序列 - 模块的序列,这些模块的序列是不对称的。中心目标是为比以前已知的更大的戒指构建这些东西。第(3)部分涉及局部戒指上的模块表的锥锥,并在投影品种上相干滑轮的共同体表的锥。乌尔里希滑轮和林乌尔里希序列是这些音符的模块版本的sheaf理论类似物 - 在这里扮演着重要的作用。第(4)部分的核心目的是证明经典霍奇概念的非共同类似物对于具有孤立的奇异性的高度表面的基质因子类别。该奖项将与其他研究人员合作进行。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估,被认为是珍贵的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Idempotent completions of equivariant matrix factorization categories
等变矩阵分解类别的幂等完成
  • DOI:
    10.1016/j.jalgebra.2023.07.023
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Brown, Michael K.;Walker, Mark E.
  • 通讯作者:
    Walker, Mark E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Walker其他文献

The effectiveness of implementing a reminder system into routine clinical practice: does it increase postpartum screening in women with gestational diabetes?
在常规临床实践中实施提醒系统的有效性:它是否会增加妊娠期糖尿病女性的产后筛查?
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alison K. Shea;Baiju R. Shah;Baiju R. Shah;Heather D. Clark;Heather D. Clark;Janine Malcolm;Mark Walker;Mark Walker;A. Karovitch;Erin Keely
  • 通讯作者:
    Erin Keely
Single Dose of Antenatal Corticosteroids (SNACS) Non-Inferiority Randomized Controlled Trial for Pregnancies at Risk of Preterm Delivery
  • DOI:
    10.1016/j.jogc.2022.02.071
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sarah McDonald;George Tomlinson;Jodie Dodd;Elizabeth Asztalos;Thierry Lacaze-Masmonteil;Prakesh Shah;Fabiana Bacchini;Isabelle Boucoiran;Barbra de Vrijer;Victoria Allen;Amit Mukerji;Mark Walker;Graeme Smith;Nir Melamed;Salim Yusuf;Louis Schmidt;Stephen Matthews;K.S. Joseph;Petros Pechlivanoglou;Kellie Murphy
  • 通讯作者:
    Kellie Murphy
Medical Education in the New Millennium. Medical Informatics, Evidence-based Medicine, Self-directed Learning and the K.O.A.L.A.© Programme
  • DOI:
    10.1016/s0849-5831(98)80061-x
  • 发表时间:
    1998-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Fung Kee Fung;Lora Temple;Mark Walker;Karen Fung Kee Fung
  • 通讯作者:
    Karen Fung Kee Fung
Advances in Resident Education: The Introduction of a Computerized Learning Portfolio—Koala
  • DOI:
    10.1016/s0849-5831(16)30933-8
  • 发表时间:
    1997-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mark Walker;Michael Fung Kee Fung;Karen Ash
  • 通讯作者:
    Karen Ash
The fetal origin of adult diseases
成人疾病的胎儿起源

Mark Walker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Walker', 18)}}的其他基金

Conference: URiCA 2024 and 2025
会议:URiCA 2024 和 2025
  • 批准号:
    2409946
  • 财政年份:
    2024
  • 资助金额:
    $ 28.26万
  • 项目类别:
    Standard Grant
PREC Track 1: Expanding the Chemical Space of Ribosomally Synthesized and Post-Translationally Modified peptides
PREC 轨道 1:扩展核糖体合成和翻译后修饰肽的化学空间
  • 批准号:
    2216836
  • 财政年份:
    2022
  • 资助金额:
    $ 28.26万
  • 项目类别:
    Continuing Grant
Free Resolutions, K-Theory and dg-Categories
自由分辨率、K 理论和 dg 类别
  • 批准号:
    1901848
  • 财政年份:
    2019
  • 资助金额:
    $ 28.26万
  • 项目类别:
    Standard Grant
Commutative Algebra Conference for Young Researchers
青年研究人员交换代数会议
  • 批准号:
    2001591
  • 财政年份:
    2019
  • 资助金额:
    $ 28.26万
  • 项目类别:
    Standard Grant
Conferences on Commutative Algebra for Early Career Researchers (KUMUNUJr 2018-2019)
早期职业研究人员交换代数会议 (KUMUNUJr 2018-2019)
  • 批准号:
    1802088
  • 财政年份:
    2018
  • 资助金额:
    $ 28.26万
  • 项目类别:
    Standard Grant
Stable Cohomology: Foundations and Applications
稳定上同调:基础和应用
  • 批准号:
    1804126
  • 财政年份:
    2018
  • 资助金额:
    $ 28.26万
  • 项目类别:
    Standard Grant
Midwestern Young Researchers Conference on Commutative Algebra and Related Disciplines: KUMUNU Jr 2017
中西部青年研究人员交换代数及相关学科会议:KUMUNU Jr 2017
  • 批准号:
    1708544
  • 财政年份:
    2017
  • 资助金额:
    $ 28.26万
  • 项目类别:
    Standard Grant
Midwestern Young Researchers Conference on Commutative Algebra and Related Disciplines: KUMUNU Jr 2016
中西部青年研究人员交换代数及相关学科会议:KUMUNU Jr 2016
  • 批准号:
    1601292
  • 财政年份:
    2016
  • 资助金额:
    $ 28.26万
  • 项目类别:
    Standard Grant
Midwestern Young Researchers Conference on Commutative Algebra and Related Disciplines: KUMUNU Jr 2015
中西部青年研究人员交换代数及相关学科会议:KUMUNU Jr 2015
  • 批准号:
    1501798
  • 财政年份:
    2015
  • 资助金额:
    $ 28.26万
  • 项目类别:
    Standard Grant
KUMUNUJr 2014
库穆努Jr 2014
  • 批准号:
    1401145
  • 财政年份:
    2014
  • 资助金额:
    $ 28.26万
  • 项目类别:
    Standard Grant

相似国自然基金

间质性肺疾病致肺气体交换功能改变的超极化129Xe MRI定量研究
  • 批准号:
    82372150
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
单原子催化醇类化合物的选择性氢氘交换反应
  • 批准号:
    22302199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
奇异积分算子交换子有界性和紧性的相关研究
  • 批准号:
    12371138
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
庆良间水道水交换季节内变异的可预报性与目标观测研究
  • 批准号:
    42376008
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
交换子在球Banach函数空间上的有界性和紧性特征
  • 批准号:
    12301123
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Hodge Theory, Dualities and Non-Commutative Geometry
霍奇理论、对偶性和非交换几何
  • 批准号:
    0403884
  • 财政年份:
    2004
  • 资助金额:
    $ 28.26万
  • 项目类别:
    Continuing Grant
Non-commutative I wa sawa theory
非交换伊瓦萨瓦理论
  • 批准号:
    16340005
  • 财政年份:
    2004
  • 资助金额:
    $ 28.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Hodge Theory, Commutative Algebra, and Geometry
霍奇理论、交换代数和几何
  • 批准号:
    9970307
  • 财政年份:
    1999
  • 资助金额:
    $ 28.26万
  • 项目类别:
    Continuing Grant
Algebraic Theory of Manifolds
流形代数理论
  • 批准号:
    01302001
  • 财政年份:
    1989
  • 资助金额:
    $ 28.26万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
Mathematics on Manifolds.
流形数学。
  • 批准号:
    61302001
  • 财政年份:
    1986
  • 资助金额:
    $ 28.26万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了