Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach

协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法

基本信息

  • 批准号:
    2126642
  • 负责人:
  • 金额:
    $ 28.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This research project designs software-hardware collaborative mechanisms to boost the execution efficiency of 3D perception (point cloud) algorithms by an order of magnitude. Achieving this goal requires designing fundamentally new algorithmic primitives, offline and run-time systems, and hardware architectures that tame the irregular computation and memory patterns in 3D perception algorithms. This research unlocks next-generation software innovation in emerging domains driven by 3D perception, such as autonomous driving, Augmented/Virtual Reality, and precision agriculture. The research agenda is complemented by an educational/outreach agenda. The PIs are (1) offering summer “introduction to computing” courses to high school students from the Rochester Central School District, (2) engaging students in RIT’s National Technical Institute for the Deaf program through experiencing 3D sensing and research activities, (3) introducing new courses/modules in both UR and RIT on 3D perception, both on algorithms and hardware systems, and (4) offering undergraduate students inclusive opportunities for hands-on experience in emerging application domains and hardware acceleration.This research project addresses the fundamental mismatch between the irregularities in point-cloud algorithms and today’s hardware architectures, which are primarily optimized for 2D image- and video-processing algorithms that are regular stencil pipelines operating on structured data. The key intellectual merit is the pursuit of new algorithms and system architectures that reduce/eliminate irregular computation and memory accesses in 3D perception. The technical contribution is three-fold: 1) efficient, yet generally applicable, hardware building blocks required to accelerate point cloud algorithms, 2) run-time systems that dynamically adapt to operating constraints (e.g., hardware resources, performance, energy) in an application-aware and data-aware manner, and 3) a new class of efficient-by-construction 3D perception algorithms that leverage the small data volume in single-beam point clouds. The algorithm-hardware co-designed system not only accelerates current 3D perception algorithms, but also provides a computing substrate so that 3D perception can be pervasively used as a building block in future application domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目设计了软件-硬件协作机制,以将 3D 感知(点云)算法的执行效率提高一个数量级。实现这一目标需要设计全新的算法原语、离线和运行时系统以及驯服的硬件架构。这项研究解锁了由 3D 感知驱动的新兴领域的下一代软件创新,例如自动驾驶、增强/虚拟现实和精准农业。 PI 还辅以教育/推广议程:(1) 为罗切斯特中央学区的高中生提供夏季“计算机概论”课程,(2) 让学生通过体验 3D 参与 RIT 国家聋人技术学院项目。传感和研究活动,(3) 在 UR 和 RIT 中引入关于 3D 感知的新课程/模块,包括算法和硬件系统,以及 (4) 为本科生提供新兴应用领域和硬件实践经验的包容性机会该研究项目解决了点云算法与当今硬件架构之间的根本不匹配问题,这些算法主要针对二维图像和视频处理算法进行优化,这些算法是在结构化数据上运行的常规模板管道。追求新的算法和系统架构,以减少/消除 3D 感知中的不规则计算和内存访问。技术贡献有三方面:1)加速点云算法所需的高效且普遍适用的硬件构建块。 2) 以应用感知和数据感知的方式动态适应操作约束(例如硬件资源、性能、能源)的运行时系统,以及 3) 一种新型的高效构建 3D 感知算法单束点云中的小数据量不仅加速了当前的3D感知,而且还为未来3D感知可以普遍用作构建块算法提供了计算基础。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
RTNN: accelerating neighbor search using hardware ray tracing
RTNN:使用硬件光线追踪加速邻居搜索
ImaGen: A General Framework for Generating Memory- and Power-Efficient Image Processing Accelerators
ImaGen:用于生成高效内存和高能效图像处理加速器的通用框架
Crescent: Taming Memory Irregularities for Accelerating Deep Point Cloud Analytics
Crescent:驯服内存不规则性以加速深度点云分析
Digital reconstruction of Elmina Castle for mobile virtual reality via point-based detail transfer
通过基于点的细节传输实现移动虚拟现实的埃尔米纳城堡数字重建
  • DOI:
    10.2352/ei.2022.34.1.vda-409
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ye, Sifan;Wu, Ting;Jarvis, Michael;Zhu, Yuhao
  • 通讯作者:
    Zhu, Yuhao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuhao Zhu其他文献

Mobile CPU's rise to power: Quantifying the impact of generational mobile CPU design trends on performance, energy, and user satisfaction
移动 CPU 的崛起:量化各代移动 CPU 设计趋势对性能、能耗和用户满意度的影响
Biallelic mutations in LSS in autosomal‐recessive mutilating palmoplantar keratoderma
常染色体隐性残缺性掌跖角化病 LSS 的双等位基因突变
  • DOI:
    10.1111/exd.14774
  • 发表时间:
    2023-02-22
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Shengru Zhou;Xingyuan Jiang;Yuhao Zhu;Jianqiu Yang;Chunyu Yuan;Min Chen;Qianqian Zhou;Zhimiao Lin;Min Li
  • 通讯作者:
    Min Li
Amanda: Unified Instrumentation Framework for Deep Neural Networks
Amanda:深度神经网络的统一仪器框架
An Early Multi-Fault Diagnosis Method of Lithium-ion Battery Based on Data-Driven
一种基于数据驱动的锂离子电池早期多故障诊断方法
  • DOI:
    10.23919/ccc55666.2022.9901796
  • 发表时间:
    2022-07-25
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Gu;Yunlong Shang;Chijun Li;Yuhao Zhu;Bin Duan;Jinglun Li;Wenyuan Zhao
  • 通讯作者:
    Wenyuan Zhao
The Role of the CPU in Energy-Efficient Mobile Web Browsing
CPU 在节能移动网络浏览中的作用
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Yuhao Zhu;Matthew Halpern;V. Reddi
  • 通讯作者:
    V. Reddi

Yuhao Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuhao Zhu', 18)}}的其他基金

Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
  • 批准号:
    2328856
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
  • 批准号:
    2328856
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: HCC: Small: Enabling Efficient Computer Systems for Augmented and Virtual Reality: A Perception-Guided Approach
合作研究:CNS 核心:HCC:小型:为增强现实和虚拟现实启用高效计算机系统:感知引导方法
  • 批准号:
    2225860
  • 财政年份:
    2022
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
CAREER: Systems and Architectural Support for Accelerator-Level Parallelism
职业:加速器级并行的系统和架构支持
  • 批准号:
    2044963
  • 财政年份:
    2021
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
AF: Small: Collaborative Research: Personalized Environmental Monitoring of Type 1 Diabetes (T1D): A Dynamic System Perspective
AF:小型:合作研究:1 型糖尿病 (T1D) 的个性化环境监测:动态系统视角
  • 批准号:
    1714136
  • 财政年份:
    2017
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant

相似国自然基金

面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
  • 批准号:
    42274025
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了