Collaborative Research: Real time Chemical Imaging of Nanoparticle Templated Tubulin-Polymerization
合作研究:纳米颗粒模板化微管蛋白聚合的实时化学成像
基本信息
- 批准号:2153091
- 负责人:
- 金额:$ 35.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanoparticles can be designed in a variety of sizes, shapes, and functionalities. This project will research the interaction of nanoparticles with specific cellular proteins that are important for life processes and to develop effective therapies for diseases such as cancer. The PIs will focus on microtubules, which are hollow protein cylinders that impart structural rigidity to cells, enable motility, and serve as conduits for intracellular transport. The ability of these materials to polymerize and depolymerize affects cellular processes and has been the subject of extensive research interest over decades. Understanding how to control the disruption of these protein structures can reduce cellular structural rigidity and serve as a target for cancer therapy. Nanoparticle-mediated inhibition of tubulin polymerization has been reported briefly; however, a general mechanistic understanding is still lacking. Such knowledge can further scientific understanding and pave the way to designing novel therapies. In this project the PIs will study the influence of nanoparticles on the polymerization of microtubules (and other filaments) both from a biochemical and structural perspective. To identify and quantitatively evaluate the chemical association of the nanoparticles with tubulin during polymerization, the PIs will utilize infrared spectroscopy, machine learning tools and other biochemical techniques. In terms of analytic ability, the integrated toolkit of measurement devices, imaging, and data analysis will be a valuable resource to investigate molecular-environmental interactions that may be expanded to other biological systems. This knowledge could have widespread implications for the comprehension of nanoparticle-based novel cancer therapeutics. For educational and outreach activities, the collaborating PIs will develop an exploratory program course intended for freshman (science and non-science majors) to enhance their education through greater interaction with faculty in small classes and to learn about research in nanotechnology. The team will specifically contribute to the education of early career and underrepresented students via university-wide programs. The algorithms and data generated during this project will be used as a basis for educational activities from the high school to professional levels. At the core of this project's technical approach is the recognition that a complete understanding of the influence of nanoparticles on microtubules polymerization is possible by applying molecular spectroscopy and imaging. Through this project the PIs will develop best methods to use for tubulin polymerization studies with nanomaterials having various chemical and surface properties. The PIs will harness the advantages of infrared spectroscopy by using recent advances in imaging technology to develop a spatially and temporally resolved approach that illuminates molecular details of microtubules dynamics and quantitatively evaluates the role of nanoparticles in tubulin polymerization. The project includes emerging infrared measurement technology coupled to an infrared transparent, cost-effective microfluidic platform that accurately controls biochemical environments spatiotemporally. Using this platform, the PIs will investigate the biochemistry, kinetics, and structural manifest of microtubules upon association with nanoparticles of varying composition, concentration, size, and surface functionalities. The extent of polymerization will be analyzed using a fluorescence assay. Gel electrophoresis studies will be used to assess the extent of polymerization and the phosphate release pathway will be analyzed to obtain possible mechanistic insight. Microfluidics-assisted infrared imaging of the nanoparticles will be employed to study the modulated microtubules formation to reveal manifestation of a completely different array of secondary structures that may arise from the propensity of select monomer units to adhere together during polymerization. Infrared images of the nanoparticles incubated with polymerized and dried microtubules will reveal nanoparticle spectral signatures of microtubules with aggregated proteins. The main technical contribution is a high-throughput IR imaging method to study protein polymerization in the absence and presence of nanoparticles in the microfluidic continuous flow mixing device and validate the results to facilitate understanding of the nanoparticle-protein interaction. The obtained data will further be investigated with statistical and machine learning approaches. The PIs will work to ensure that the protocols developed here are available to students of all levels, giving them an opportunity to understand the fundamentals of tubulin dynamics with nanotechnology and stimulating their creativity to develop new cancer therapeutics. In addition, the students will participate in dedicated projects, learning about future career opportunities in these fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳米颗粒可以以各种尺寸,形状和功能设计。该项目将研究纳米颗粒与特定细胞蛋白的相互作用,这些蛋白对于生命过程很重要,并开发了诸如癌症等疾病的有效疗法。 PI将集中在微管上,这些微管是赋予细胞结构刚度的空心蛋白缸,使运动能力并用作细胞内转运的管道。这些材料聚合和解聚的能力会影响细胞过程,并且一直是数十年来广泛研究的主题。了解如何控制这些蛋白质结构的破坏可以降低细胞结构僵硬,并作为癌症治疗的靶标。纳米粒子介导的抑制微管蛋白聚合已有报道。但是,仍然缺乏一般的机械理解。这种知识可以进一步的科学理解,并为设计新型疗法铺平道路。在该项目中,PI将从生化和结构的角度研究纳米颗粒对微管(和其他细丝)聚合的影响。为了确定和定量评估聚合过程中纳米颗粒与微管蛋白的化学关联,PIS将利用红外光谱,机器学习工具和其他生化技术。在分析能力方面,测量设备,成像和数据分析的综合工具包将是研究可以扩展到其他生物系统的分子环境相互作用的宝贵资源。这些知识可能对基于纳米颗粒的新型癌症治疗剂的理解具有广泛的影响。对于教育和外展活动,合作的PI将开发一个探索性计划课程,旨在新生(科学和非科学专业)通过在小课程中与教职员工进行更大的互动,并了解纳米技术的研究,从而增强他们的教育。该团队将通过大学范围的课程为早期职业的教育和代表性不足的学生做出贡献。该项目期间生成的算法和数据将被用作从高中到专业水平的教育活动的基础。该项目技术方法的核心是认识到,通过应用分子光谱和成像,可以完全理解纳米颗粒对微管聚合的影响。通过该项目,PI将开发最佳方法,用于使用具有各种化学和表面特性的纳米材料来用于微管蛋白聚合研究。 PI将通过使用成像技术的最新进展来利用红外光谱的优势来开发一种空间和时间分辨的方法,该方法阐明了微管动力学的分子细节,并定量评估纳米颗粒在微管蛋白聚合中的作用。该项目包括新兴红外测量技术,该技术与红外透明,具有成本效益的微流体平台相连,该平台可以准确地控制生物化学环境。使用此平台,PIS将研究微管与不同组成,浓度,大小和表面功能的纳米颗粒后的生物化学,动力学和结构表现。将使用荧光测定法分析聚合的程度。凝胶电泳研究将用于评估聚合的程度,将分析磷酸盐释放途径以获得可能的机械洞察力。纳米颗粒的微流体辅助红外成像将用于研究调制的微管形成,以揭示可能由精选单体单元的倾向而产生的完全不同的二级结构的表现,以在聚合过程中粘附在一起。与聚合和干燥的微管孵育的纳米颗粒的红外图像将揭示带有聚集蛋白的微管的纳米粒子光谱特征。主要的技术贡献是在微流体连续流混合装置中不存在和存在纳米颗粒的情况下研究蛋白质聚合的一种高通量IR成像方法,并验证结果以促进对纳米颗粒 - 蛋白质相互作用的理解。获得的数据将通过统计和机器学习方法进一步研究。 PI将努力确保此处开发的协议可供各个级别的学生使用,从而有机会了解具有纳米技术的微管蛋白动力学基础,并刺激其创造力以开发新的癌症治疗剂。此外,学生将参加专门的项目,了解这些领域的未来职业机会。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估标准通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dipanjan Pan其他文献
ENHANCED ANTIANGIOGENIC EFFICACY OF PRODRUG NANOPARTICLES QUANTIFIED WITH MAGNETIC RESONANCE IMAGING
- DOI:
10.1016/s0735-1097(11)61592-1 - 发表时间:
2011-04-05 - 期刊:
- 影响因子:
- 作者:
Dipanjan Pan;Ann Schmieder;Nibedita Sanyal;Xiaoxia Yang;Angana Senpan;John Allen;Huiying Zhang;Samuel Wickline;Gregory Lanza - 通讯作者:
Gregory Lanza
Indium Mediated Allylation of β-Chloro-/β-Alkoxy Vinylaldehyde: A Facile One Pot Synthesis of 1-Chloro-/1-Alkoxy Hexa-1,5-diene-3-ol Derivatives
铟介导的 β-氯-/β-烷氧基乙烯醛烯丙基化:一锅法轻松合成 1-氯-/1-烷氧基六-1,5-二烯-3-醇衍生物
- DOI:
10.1081/scc-120015553 - 发表时间:
2003 - 期刊:
- 影响因子:2.1
- 作者:
Dipanjan Pan;G. Kar;J. Ray - 通讯作者:
J. Ray
Molecular Recognition: Studies on the Synthesis of Methylene Pivotal Bisthiophene Carboxamide Derivatives as Ditopic Receptors for Suberic Acid
分子识别:辛二酸双位受体亚甲基双噻吩甲酰胺衍生物的合成研究
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Sulagna Brahma;Dipanjan Pan;J. Ray - 通讯作者:
J. Ray
Compound Nanoparticle 5HMF-Prodrug Formulations for Optimized Anti-Sickling Therapy
- DOI:
10.1182/blood-2022-168781 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Stephen C Rogers;Parikshit Moitra;Mary Brummet;Zohreh Safari;Qihong Wang;Joy Okhuevbie;Nancy Anabaraonye;Osheiza Y. Abdulmalik;Martin K. Safo;Nicole Glynn-Cunningham;Jennie Y. Law;Maria R. Baer;Dipanjan Pan;Allan Doctor - 通讯作者:
Allan Doctor
Implementing a challenge-inspired undergraduate experience
实施充满挑战的本科生体验
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
M. Pool;R. Bhargava;P. Carney;Dipanjan Pan;Andrew M. Smith - 通讯作者:
Andrew M. Smith
Dipanjan Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dipanjan Pan', 18)}}的其他基金
Collaborative Research: Real time Chemical Imaging of Nanoparticle Templated Tubulin-Polymerization
合作研究:纳米颗粒模板化微管蛋白聚合的实时化学成像
- 批准号:
2229986 - 财政年份:2022
- 资助金额:
$ 35.75万 - 项目类别:
Continuing Grant
相似国自然基金
面向真实场景的高效盲图像超分辨率方法研究
- 批准号:62302309
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
结合数据特性分析的真实场景行人再识别技术研究
- 批准号:62301346
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于真实道路的机动车CO2排放因子模型优化与应用研究
- 批准号:42303015
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物基质中真实PM2.5的原位分析及在PM2.5入脑行为研究中的应用
- 批准号:22376202
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向真实场景的基于人体关节点的行为理解研究
- 批准号:62302093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331401 - 财政年份:2024
- 资助金额:
$ 35.75万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331400 - 财政年份:2024
- 资助金额:
$ 35.75万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312978 - 财政年份:2023
- 资助金额:
$ 35.75万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type II: REFRESH: Revisiting Expanding FPGA Real-estate for Environmentally Sustainability Heterogeneous-Systems
合作研究:DESC:类型 II:REFRESH:重新审视扩展 FPGA 空间以实现环境可持续性异构系统
- 批准号:
2324865 - 财政年份:2023
- 资助金额:
$ 35.75万 - 项目类别:
Standard Grant
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
- 批准号:
2226901 - 财政年份:2023
- 资助金额:
$ 35.75万 - 项目类别:
Standard Grant