Collaborative Research: Optimal Sensor Selection and Robust Traffic Detection and Estimation in a World of Connected Vehicles

协作研究:联网车辆世界中的最佳传感器选择以及稳健的交通检测和估计

基本信息

  • 批准号:
    2152928
  • 负责人:
  • 金额:
    $ 28.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Reliable traffic management strategies require accurate knowledge of traffic levels on roads. Though the emergence of connected vehicles (CV) offers tremendous potential for sharing traffic data about vehicles' locations and speeds through wireless communications, there are both privacy concerns and bandwidth constraints - not all users want to share and not all vehicles are able to share. This project will address both issues by designing methods to guide the selection of some road users for data sharing and analysis to provide accurate estimation of traffic levels in real time, while addressing privacy and bandwidth issues. Throughout this project, training modules in traffic and machine learning sciences will be designed at both UT San Antonio and UT Austin and students from underrepresented groups will be recruited at UTSA where 58 percent of enrolled students are minorities.The project will: (i) consider privacy of user data hence maintaining anonymity of vehicles and users, (ii) identify sudden changes in traffic conditions due to accidents, (iii) design a time-varying selection of traffic data collected in real-time from CVs, and (iv) quantify limits on the network bandwidth and uncertainty in traffic conditions and road properties. The project's major contribution lies in advancing the use of CVs as real-time, mobile traffic sensors. This involves the integration of concepts from multiple disciplines: traffic flow, networked systems, estimation, and machine learning theories. Specifically, the project will investigate computationally scalable methods that traffic operators can utilize to optimally sample data from CVs while satisfying privacy and bandwidth constraints, thereby monitoring traffic in real-time. The theoretical foundations will be validated with realistic traffic setups through collaborations with the cities of Austin and San Antonio. The broader impact of the research transcends traffic networks: the computational algorithms will be applicable to related problems involving networked systems of partial differential equations and moving sensing platforms such as environmental monitoring by robot and unmanned aerial vehicles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可靠的交通管理策略需要准确了解道路上的交通水平。尽管互联车辆(CV)的出现具有巨大的潜力,可以通过无线通信共享有关车辆位置和速度的交通数据,但既存在隐私问题和带宽限制 - 并非所有用户都希望共享,而不是所有车辆都能共享。该项目将通过设计方法来解决这两个问题,以指导一些道路用户进行数据共享和分析,以实时对流量水平进行准确的估计,同时解决隐私和带宽问题。在整个项目中,在UT San Antonio和UT Austin和UT Austin以及来自代表性不足的群体的学生都将在UTSA招募58%的入学学生是少数项目的培训模块,以及来自代表性不足的组的学生,该项目将是少数群体。从CVS实时收集的数据,(IV)量化了交通条件和道路属性的网络带宽和不确定性的限制。该项目的主要贡献在于推进使用简历作为实时移动交通传感器的使用。这涉及从多个学科的概念集成:交通流量,网络系统,估计和机器学习理论。具体而言,该项目将研究流量运营商可以利用的计算可扩展方法,可在满足隐私和带宽约束的同时最佳地从CVS进行示例数据,从而实时监视流量。理论基础将通过与奥斯汀和圣安东尼奥的城市的合作来验证现实的交通设置。研究的更广泛影响超越了交通网络:计算算法将适用于涉及部分微分方程的网络系统以及移动传感平台的相关问题,例如机器人和无人驾驶飞机的环境监控。该奖项反映了NSF的法定任务,并通过评估了该基金会的智力效果。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Updating Static Output Feedback Controllers Under State-Space Perturbation
状态空间扰动下更新静态输出反馈控制器
Towards Understanding Sensor and Control Nodes Selection in Nonlinear Dynamic Systems: Lyapunov Theory Meets Branch-and-Bound
  • DOI:
    10.1016/j.automatica.2021.109904
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sebastian A. Nugroho;A. Taha
  • 通讯作者:
    Sebastian A. Nugroho;A. Taha
Sensor Placement Strategies for Some Classes of Nonlinear Dynamic Systems via Lyapunov Theory
基于李亚普诺夫理论的某些类型非线性动态系统的传感器放置策略
Where Should Traffic Sensors Be Placed on Highways?
交通传感器应该安装在高速公路的什么位置?
How Effective is Model Predictive Control in Real‐Time Water Quality Regulation? State‐Space Modeling and Scalable Control
模型预测控制在实时水质调节中的效果如何?
  • DOI:
    10.1029/2020wr027771
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Wang, Shen;Taha, Ahmad F.;Abokifa, Ahmed A.
  • 通讯作者:
    Abokifa, Ahmed A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ahmad Taha其他文献

Novel Contactless Sensing Technique for Real-time Human Activity Detection
用于实时人体活动检测的新型非接触式传感技术
Non-Invasive Localisation Using Software-Defined Radios
使用软件定义无线电进行非侵入式定位
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Khan;Ahmad Taha;William Taylor;M. Imran;Q. Abbasi
  • 通讯作者:
    Q. Abbasi
Coded environments: data-driven indoor localisation with reconfigurable intelligent surfaces
编码环境:具有可重构智能表面的数据驱动的室内定位
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Syed Tariq Shah;M. Shawky;J. Kazim;Ahmad Taha;Shuja Ansari;Syed Faraz Hasan;M. Imran;Q. Abbasi
  • 通讯作者:
    Q. Abbasi
Sorta Solving the OPF by Not Solving the OPF: DAE Control Theory and the Price of Realtime Regulation
通过不求解 OPF 来求解 OPF:DAE 控制理论和实时调节的代价
DYNAMIC PROGRAMMING OF A TORSO ACTUATED RIMLESS WHEEL ROBOT
躯干驱动无轮机器人的动态编程
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pranav A. Bhounsule;H. Wan;Robert Brothers;R. Hood;S. Sánchez;Ezra Ameperosa;Rico Ulep;Scott Miller;Kyle Seale;A. Zamani;Ahmad Taha;G. Brothers;A. Torso;Actuated Rimless;Wheel Robot
  • 通讯作者:
    Wheel Robot

Ahmad Taha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ahmad Taha', 18)}}的其他基金

Collaborative Research: CyberTraining: Implementation: Medium: Cross-Disciplinary Training for Joint Cyber-Physical Systems and IoT Security
协作研究:网络培训:实施:中:联合网络物理系统和物联网安全的跨学科培训
  • 批准号:
    2230087
  • 财政年份:
    2023
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Continuing Grant
CAREER: Scheduling Driving Sensing and Control Nodes in Nonlinear Networks with Applications to Fuel-Free Energy Systems
职业:调度非线性网络中的驱动传感和控制节点及其在无燃料能源系统中的应用
  • 批准号:
    2044430
  • 财政年份:
    2021
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Joint Control of Hydraulics and Water Quality Dynamics in Drinking Water Networks
合作研究:饮用水管网水力学和水质动态的联合控制
  • 批准号:
    2151392
  • 财政年份:
    2021
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing Robust Control and State Estimation of Converter-Based Power Systems
合作研究:推进基于转换器的电力系统的鲁棒控制和状态估计
  • 批准号:
    2151571
  • 财政年份:
    2021
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
CAREER: Scheduling Driving Sensing and Control Nodes in Nonlinear Networks with Applications to Fuel-Free Energy Systems
职业:调度非线性网络中的驱动传感和控制节点及其在无燃料能源系统中的应用
  • 批准号:
    2152450
  • 财政年份:
    2021
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing Robust Control and State Estimation of Converter-Based Power Systems
合作研究:推进基于转换器的电力系统的鲁棒控制和状态估计
  • 批准号:
    2013786
  • 财政年份:
    2020
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Joint Control of Hydraulics and Water Quality Dynamics in Drinking Water Networks
合作研究:饮用水管网水力学和水质动态的联合控制
  • 批准号:
    2015671
  • 财政年份:
    2020
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimal Sensor Selection and Robust Traffic Detection and Estimation in a World of Connected Vehicles
协作研究:联网车辆世界中的最佳传感器选择以及稳健的交通检测和估计
  • 批准号:
    1917164
  • 财政年份:
    2019
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Selecting Sensors and Actuators for Topologically Evolving Networked Dynamical Systems: Battling Contamination in Water Networks
合作研究:为拓扑演化的网络动力系统选择传感器和执行器:对抗水网络中的污染
  • 批准号:
    1728629
  • 财政年份:
    2017
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant

相似国自然基金

基于情境最佳化的模型预测控制方法研究
  • 批准号:
    62303416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于因果学习的脓毒症最佳治疗策略与效应估计关键技术研究
  • 批准号:
    62371438
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Camassa-Holm方程和短脉冲型方程的最佳适定性与爆破现象研究
  • 批准号:
    12301298
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于光域正交基分解的微波光子宽带矢量信号最佳接收方法研究
  • 批准号:
    62305266
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
线性正则变换域致密气储层的地震信号最佳时频表征及预测研究
  • 批准号:
    42204116
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344765
  • 财政年份:
    2024
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341950
  • 财政年份:
    2024
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344766
  • 财政年份:
    2024
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323414
  • 财政年份:
    2024
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了