CDS&E: Simulation- and Data-driven Peptide Antibody Design Targeting RBD and non-RBD Epitopes of SARS-CoV-2 Spike Protein
CDS
基本信息
- 批准号:2152853
- 负责人:
- 金额:$ 54.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Drugs interact with proteins to disrupt bacterial and viral infections. Effective drugs are usually discovered rather than designed. Antibodies are protein complexes generated by the immune system to bind to and inactivate viruses. Peptides are short strings of amino acids that are being designed to mimic the protein binding activity of antibodies. Many aspects of protein-protein and protein-peptide interactions are not clearly understood. This project will apply an artificial intelligence approach to understand those interactions. The SARS-CoV-2 spike protein will be the model system for study. The resulting model for therapeutic peptide design will be provided to the research community on a variety of software platforms. The project will also support outreach to K-12 students regarding the SARS-CoV-2 virus and viral infections. The overall objective is to develop a hybrid machine learning-simulation (MLSim) platform that allows us to better understand the molecular interaction between peptide drugs and viral proteins. The model viral protein system will be the SARS-CoV-2 spike proteins at both the receptor-binding domain (RBD) and the non-RBD. Transfer learning techniques for existing data models for protein-peptide interactions will be implemented. Online learning techniques will allow for the timely update of the predictive models with newly available data. The multiscale simulation component aids the machine learning part by supplying high-fidelity input data and cross-validating the predictions These efforts should result in molecular-level insight into viral protein-antibody interactions. There are two key outcomes anticipated from this project. First, a simulation- and data-enabled platform that integrates a high-throughput, customizable machine learning pipeline for fast screening and filtering peptide candidates, with high-fidelity all-atom explicit-solvent molecular dynamics simulation and free energy calculations. The second is fundamental insight into viral protein-peptide interactions and how those influence the design of neutralizing peptides.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
药物与蛋白质相互作用,破坏细菌和病毒感染。通常发现有效的药物而不是设计。抗体是免疫系统产生的蛋白质复合物,以结合和灭活病毒。肽是氨基酸的短串,这些氨基酸是为模拟抗体的蛋白质结合活性而设计的。蛋白质 - 蛋白质和蛋白质肽相互作用的许多方面尚未清楚地了解。该项目将采用人工智能方法来了解这些相互作用。 SARS-COV-2尖峰蛋白将成为研究模型系统。最终的治疗肽设计模型将通过各种软件平台提供给研究社区。该项目还将支持与K-12学生有关SARS-COV-2病毒和病毒感染的宣传。总体目标是开发混合机器学习模拟(MLSIM)平台,该平台使我们能够更好地了解肽药物和病毒蛋白之间的分子相互作用。模型病毒蛋白系统将是受体结合结构域(RBD)和非RBD的SARS-COV-2峰值蛋白。将实施针对蛋白质肽相互作用的现有数据模型的转移学习技术。在线学习技术将允许使用新可用数据及时更新预测模型。多尺度模拟组件通过提供高保真输入数据并交叉验证这些努力来帮助机器学习部分,这些努力应导致分子水平对病毒蛋白抗体相互作用的见解。该项目预期有两个关键结果。首先,一个模拟和数据支持平台,集成了用于快速筛选和过滤肽候选的高通量,可自定义的机器学习管道,具有高保真性的全原子性明显 - 溶剂分子动力学模拟和自由能计算。第二个是对病毒蛋白肽相互作用的基本洞察力,以及它们如何影响中和肽的设计。该奖项反映了NSF的法定任务,并且使用基金会的知识分子和更广泛的影响评估标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baofu Qiao其他文献
Baofu Qiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baofu Qiao', 18)}}的其他基金
CDS&E: Simulation- and Data-driven Peptide Antibody Design Targeting RBD and non-RBD Epitopes of SARS-CoV-2 Spike Protein
CDS
- 批准号:
2328095 - 财政年份:2022
- 资助金额:
$ 54.94万 - 项目类别:
Standard Grant
相似国自然基金
基于浅水方程知识和数据融合驱动的城市内涝高效精细模拟及其可迁移性研究
- 批准号:52379010
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
风云四号全空红外辐射资料同化的变分质量控制方法研究及其应用
- 批准号:42305172
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于多源数据同化的东北地区陆地水储量变化模拟与归因研究
- 批准号:42301436
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
降雨数据时空分辨率对城市洪水模拟的影响规律和机理
- 批准号:52309037
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
极紫外晚相耀斑的数据驱动模拟研究
- 批准号:12303061
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CDS&E: Simulation- and Data-driven Peptide Antibody Design Targeting RBD and non-RBD Epitopes of SARS-CoV-2 Spike Protein
CDS
- 批准号:
2328095 - 财政年份:2022
- 资助金额:
$ 54.94万 - 项目类别:
Standard Grant
CDS&E: Extracting Models from Data - A Novel Data-Driven Simulation Strategy for Reacting Flows
CDS
- 批准号:
1953350 - 财政年份:2020
- 资助金额:
$ 54.94万 - 项目类别:
Standard Grant
CDS&E: An Effective Thermal Simulation Methodology for GPGPUs Enabled by Data-Driven Model Reduction
CDS
- 批准号:
2003307 - 财政年份:2020
- 资助金额:
$ 54.94万 - 项目类别:
Standard Grant
D3SC: CDS&E: Learning molecular models from microscopic simulation and experimental data
D3SC:CDS
- 批准号:
1900374 - 财政年份:2019
- 资助金额:
$ 54.94万 - 项目类别:
Standard Grant
CDS&E: Simulation- and Data-driven Search for Cross-dimensional Materials Interfaces to Enhance Heat Transfer
CDS
- 批准号:
1902352 - 财政年份:2019
- 资助金额:
$ 54.94万 - 项目类别:
Continuing Grant