Collaborative Research: OAC CORE: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC CORE:水文应用中 3D 表面拓扑的大规模空间机器学习
基本信息
- 批准号:2152085
- 负责人:
- 金额:$ 26.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rapid advances in sensing technology and computer simulation have generated vast amounts of 3D surface data in various scientific domains, from high-resolution geographic terrains to electrostatic surfaces of proteins. Analyzing such emerging 3D surface big data provides scientists an opportunity to study problems that were not possible before, such as mapping detailed surface water flow and distribution for the entire continental US. Despite its vast transformative potential, machine learning tools to analyze large volumes of 3D surface data are not readily available. The project aims to fill this gap by designing a novel parallel spatial machine learning framework for 3D surface topology and implementing the system in a distributed computing environment. The system can produce high-quality observation-based flood inundation maps derived from satellite images. In collaboration with federal agencies (e.g., U.S. Geological Survey, NOAA), the project will enhance situational awareness for flood disaster response and improve flood forecasting capabilities of the NOAA National Water Model by filling in the gap of lacking observations in model calibration and validation. The proposed software tools will be open-source to enhance the research infrastructure for the broad geoscience communities. Educational activities include curriculum development, mentoring a group of high school students in data science seminars at K-12 Summer Camps, and year-long projects for selected high school students in regional Science Fair competitions. The project will transform spatial machine learning research by enhancing terrain awareness through modeling large-scale 3D surface topology. Specifically, the project will bring about the following cyberinfrastructure innovations. First, the project will design a topography-aware spatial probabilistic model called hidden Markov contour forest, which advances existing machine learning tools by incorporating physical constraints of heterogeneous 3D terrains into zonal tree structures in the model representation. Second, the project will investigate a parallel inference framework by decomposing both intra-zone dependency and inter-zone dependency. Finally, the project will implement the proposed parallel learning framework in a distributed computing environment by addressing challenges related to task partitioning, load balancing, and dynamic task scheduling. The proposed system will be deployed for real-world rapid flood disaster response and the validation and calibration of the National Water Model through collaboration with the U.S. Geological Survey and NOAA.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传感技术和计算机模拟的快速进步已经在各种科学领域中产生了大量的3D表面数据,从高分辨率地理地形到蛋白质的静电表面。分析这种新兴的3D表面大数据为科学家提供了研究以前无法使用的问题的机会,例如绘制整个美国大陆的详细地表水流和分布。尽管具有巨大的变革潜力,但无法容易获得分析大量3D表面数据的机器学习工具。该项目旨在通过设计一个新型的平行空间机器学习框架来填补这一空白,用于3D表面拓扑并在分布式计算环境中实现系统。该系统可以产生从卫星图像得出的高质量基于观察的洪水淹没图。通过与联邦机构(例如,美国地质调查局,NOAA)合作,该项目将通过填补模型校准和验证中缺乏观察到的空白,从而提高对洪水灾害响应的情境意识,并提高NOAA国家水模型的洪水预测能力。提出的软件工具将是开源的,以增强广泛地球科学社区的研究基础架构。教育活动包括课程开发,指导一群在K-12夏令营的数据科学研讨会上的高中生,以及为区域科学公平竞赛中选定的高中学生提供长达一年的项目。该项目将通过建模大规模3D表面拓扑来提高地形意识来改变空间机器学习研究。具体来说,该项目将带来以下网络基础设施创新。首先,该项目将设计一个称为“隐藏的马尔可夫轮廓森林”的地形感知的空间概率模型,该模型通过将异质3D地形的物理约束纳入模型表示中的区域树结构来推动现有的机器学习工具。其次,该项目将通过分解区域内依赖性和区域间依赖性来研究平行的推理框架。最后,该项目将通过解决与任务分配,负载平衡和动态任务计划相关的挑战,在分布式计算环境中实现所提出的并行学习框架。拟议的系统将用于现实世界中的快速洪水灾难响应,并通过与美国地质调查局和NOAA的合作进行验证和校准。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的审查标准来通过评估来通过评估来支持的。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An elevation-guided annotation tool for flood extent mapping on earth imagery (demo paper)
用于在地球图像上绘制洪水范围的高程引导注释工具(演示论文)
- DOI:10.1145/3557915.3560962
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Adhikari, Saugat;Yan, Da;Sami, Mirza Tanzim;Khalil, Jalal;Yuan, Lyuheng;Joy, Bhadhan Roy;Jiang, Zhe;Sainju, Arpan Man
- 通讯作者:Sainju, Arpan Man
A Hidden Markov Forest Model for Terrain-Aware Flood Inundation Mapping from Earth Imagery
用于根据地球图像进行地形感知洪水淹没绘图的隐马尔可夫森林模型
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Jiang, Zhe;Zhang, Yupu;Adhikari, Saugat;Yan, Da;Sainju, Arpan Man;Jia, Xiaowei;Xie, Yiqun
- 通讯作者:Xie, Yiqun
Earth Imagery Segmentation on Terrain Surface with Limited Training Labels: A Semi-supervised Approach based on Physics-Guided Graph Co-Training
- DOI:10.1145/3481043
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Wenchong He;Arpan Man Sainju;Zhe Jiang;Da Yan;Yang Zhou
- 通讯作者:Wenchong He;Arpan Man Sainju;Zhe Jiang;Da Yan;Yang Zhou
Quantifying and Reducing Registration Uncertainty of Spatial Vector Labels on Earth Imagery
- DOI:10.1145/3534678.3539410
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Wenchong He;Zhenling Jiang;Marcus Kriby;Yiqun Xie;X. Jia;Da Yan;Yang Zhou
- 通讯作者:Wenchong He;Zhenling Jiang;Marcus Kriby;Yiqun Xie;X. Jia;Da Yan;Yang Zhou
Spatial Knowledge-Infused Hierarchical Learning: An Application in Flood Mapping on Earth Imagery
- DOI:10.1145/3589132.3625591
- 发表时间:2023-11
- 期刊:
- 影响因子:0
- 作者:Zelin Xu;Tingsong Xiao;Wenchong He;Yu Wang;Zhe Jiang
- 通讯作者:Zelin Xu;Tingsong Xiao;Wenchong He;Yu Wang;Zhe Jiang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhe Jiang其他文献
Weakly Supervised Deep Learning-Based Optical Coherence Tomography Angiography
基于弱监督深度学习的光学相干断层扫描血管造影
- DOI:
10.1109/tmi.2020.3035154 - 发表时间:
2020-11 - 期刊:
- 影响因子:10.6
- 作者:
Zhe Jiang;Zhiyu Huang;Bin Qiu;Xiangxi Meng;Yunfei You;Xi Liu;Mufeng Geng;Gangjun Liu;Chuanqing Zhou;Kun Yang;Andreas Maier;Qiushi Ren;Yanye Lu - 通讯作者:
Yanye Lu
Dynamic regulation of the Stra13/Sharp/Dec bHLH repressors in mammary epithelium
乳腺上皮中 Stra13/Sharp/Dec bHLH 阻遏蛋白的动态调节
- DOI:
10.1002/dvdy.20013 - 发表时间:
2004 - 期刊:
- 影响因子:2.5
- 作者:
B. St;Melissa Cooper;Zhe Jiang;E. Zacksenhaus;S. Egan - 通讯作者:
S. Egan
Future Research Needs
未来的研究需求
- DOI:
10.1007/978-3-319-60195-3_7 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zhe Jiang;S. Shekhar - 通讯作者:
S. Shekhar
Thiol‐ene photoclick reaction: An eco‐friendly and facile approach for preparation of MPEG‐g‐keratin biomaterial
硫醇烯光点击反应:一种生态友好且简便的制备 MPEG-g-角蛋白生物材料的方法
- DOI:
10.1002/elsc.201900105 - 发表时间:
2019-10 - 期刊:
- 影响因子:2.7
- 作者:
Xianpan Ye;Jiugang Yuan;Zhe Jiang;Shuoxuan Wang;Ping Wang;Qiang Wang;Li Cui - 通讯作者:
Li Cui
Air quality response in China linked to the 2019 novel Coronavirus (COVID-19) mitigation
中国与 2019 年新型冠状病毒 (COVID-19) 缓解措施相关的空气质量应对措施
- DOI:
10.1002/essoar.10503362.1 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
K. Miyazaki;K. Bowman;T. Sekiya;Zhe Jiang;Xiaokang Chen;H. Eskes;M. Ru;Yuqiang Zhang;D. Shindell - 通讯作者:
D. Shindell
Zhe Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhe Jiang', 18)}}的其他基金
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402946 - 财政年份:2024
- 资助金额:
$ 26.12万 - 项目类别:
Standard Grant
III: Small: Spatial Deep Learning from Imperfect Volunteered Geographic Information
III:小:从不完美的自愿地理信息中进行空间深度学习
- 批准号:
2207072 - 财政年份:2021
- 资助金额:
$ 26.12万 - 项目类别:
Standard Grant
Collaborative Research: OAC CORE: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC CORE:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2107530 - 财政年份:2021
- 资助金额:
$ 26.12万 - 项目类别:
Standard Grant
CRII: III: Disciplinary Knowledge Guided Big Spatial Structured Models for Geoscience Applications
CRII:III:学科知识引导的地球科学应用大空间结构化模型
- 批准号:
2147908 - 财政年份:2021
- 资助金额:
$ 26.12万 - 项目类别:
Standard Grant
III: Small: Spatial Deep Learning from Imperfect Volunteered Geographic Information
III:小:从不完美的自愿地理信息中进行空间深度学习
- 批准号:
2008973 - 财政年份:2020
- 资助金额:
$ 26.12万 - 项目类别:
Standard Grant
CRII: III: Disciplinary Knowledge Guided Big Spatial Structured Models for Geoscience Applications
CRII:III:学科知识引导的地球科学应用大空间结构化模型
- 批准号:
1850546 - 财政年份:2019
- 资助金额:
$ 26.12万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 26.12万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 26.12万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2414185 - 财政年份:2024
- 资助金额:
$ 26.12万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402947 - 财政年份:2024
- 资助金额:
$ 26.12万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403313 - 财政年份:2024
- 资助金额:
$ 26.12万 - 项目类别:
Standard Grant