Collaborative Research: SCH: Trustworthy and Explainable AI for Neurodegenerative Diseases

合作研究:SCH:值得信赖且可解释的人工智能治疗神经退行性疾病

基本信息

  • 批准号:
    2123952
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Driven by its performance accuracy, machine learning (ML) has been used extensively for various applications in the healthcare domain. Despite its promising performance, researchers and the public have grown alarmed by two unsettling deficiencies of these otherwise useful and powerful models. First, there is a lack of trustworthiness - ML models are prone to interference or deception and exhibit erratic behaviors when in action dealing with unseen data, despite good practice during the training phase. Second, there is a lack of interpretability - ML models have been described as 'black-boxes' because there is little explanation for why the models make the predictions they do. This has called into question the applicability of ML to decision-making in critical scenarios such as image-based disease diagnostics or medical treatment recommendation. The ultimate goal of this project is to develop computational foundation for trustworthy and explainable Artificial Intelligence (AI), and offer a low-cost and non-invasive ML-based approach to early diagnosis of neurodegenerative diseases. In particular, the project aims to develop computational theories, ML algorithms, and prototype systems. The project includes developing principled solutions to trustworthy ML and making the ML prediction process transparent to end-users. The later will focus on explaining how and why an ML model makes such a prediction, while dissecting its underlying structure for deeper understanding. The proposed models are further extended to a multi-modal and spatial-temporal framework, an important aspect of applying ML models to healthcare. A verification framework with end-users is defined, which will further enhance the trustworthiness of the prototype systems. This project will benefit a variety of high-impact AI-based applications in terms of their explainability, trustworthy, and verifiability. It not only advances the research fronts of deep learning and AI, but also supports transformations in diagnosing neurodegenerative diseases. This project will develop the computational foundation for trustworthy and explainable AI with several innovations. First, the project will systematically study the trustworthiness of ML systems. This will be measured by novel metrics such as, adversarial robustness and semantic saliency, and will be carried out to establish the theoretical basis and practical limits of trustworthiness of ML algorithms. Second, the project provides a paradigm shift for explainable AI, explaining how and why a ML model makes its prediction, moving away from ad-hoc explanations (i.e. what features are important to the prediction). A proof-based approach, which probes all the hidden layers of a given model to identify critical layers and neurons involved in a prediction from a local point of view, will be devised. Third, a verification framework, where users can verify the model's performance and explanations with proofs, will be designed to further enhance the trustworthiness of the system. Finally, the project also advances the frontier of neurodegenerative diseases early diagnosis from multimodal imaging and longitudinal data by: (i) identifying retinal vasculature biomarkers using proof-based probing in biomarker graph networks; (ii) connecting biomarkers of the retina and the brain vasculature via cross- modality explainable AI model; and, (iii) recognizing the longitudinal trajectory of vasculature biomarkers via a spatio-temporal recurrent explainable model. This synergistic effort between computer science and medicine will enable a wide range of applications to trustworthy and explainable AI for healthcare. The results of this project will be assimilated into the courses and summer programs that the research team have developed with specially designed projects to train students with trustworthy and explainable AI.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
受其性能准确性的推动,机器学习 (ML) 已广泛用于医疗保健领域的各种应用。尽管其性能令人鼓舞,但研究人员和公众对这些原本有用且强大的模型的两个令人不安的缺陷感到震惊。首先,缺乏可信度——尽管在训练阶段有良好的实践,但机器学习模型在处理看不见的数据时很容易受到干扰或欺骗,并表现出不稳定的行为。其次,缺乏可解释性——机器学习模型被描述为“黑匣子”,因为几乎没有解释为什么模型会做出这样的预测。这让人质疑机器学习在关键场景(例如基于图像的疾病诊断或医疗推荐)决策中的适用性。该项目的最终目标是为值得信赖和可解释的人工智能 (AI) 开发计算基础,并提供一种低成本、非侵入性的基于 ML 的方法来早期诊断神经退行性疾病。该项目尤其旨在开发计算理论、机器学习算法和原型系统。该项目包括开发可信赖的机器学习的原则性解决方案,并使机器学习预测过程对最终用户透明。后者将重点解释机器学习模型如何以及为何做出这样的预测,同时剖析其底层结构以加深理解。所提出的模型进一步扩展到多模态和时空框架,这是将机器学习模型应用于医疗保健的一个重要方面。定义了最终用户的验证框架,这将进一步增强原型系统的可信度。该项目将在可解释性、可信性和可验证性方面使各种高影响力的基于人工智能的应用程序受益。它不仅推进了深度学习和人工智能的研究前沿,而且支持神经退行性疾病诊断的转变。该项目将通过多项创新为可信赖且可解释的人工智能开发计算基础。首先,该项目将系统地研究机器学习系统的可信度。这将通过对抗性鲁棒性和语义显着性等新颖的指标来衡量,并将用于建立机器学习算法可信度的理论基础和实际限制。其次,该项目为可解释的人工智能提供了范式转变,解释了机器学习模型如何以及为何进行预测,摆脱了临时解释(即哪些特征对预测很重要)。将设计一种基于证明的方法,该方法探测给定模型的所有隐藏层,以从局部角度识别参与预测的关键层和神经元。第三,将设计一个验证框架,用户可以通过证明来验证模型的性能和解释,以进一步增强系统的可信度。最后,该项目还通过以下方式推进了多模态成像和纵向数据的神经退行性疾病早期诊断的前沿:(i)使用生物标记图网络中基于证据的探测来识别视网膜脉管系统生物标记; (ii) 通过跨模态可解释的人工智能模型连接视网膜和大脑脉管系统的生物标志物; (iii) 通过时空循环可解释模型识别脉管系统生物标志物的纵向轨迹。计算机科学和医学之间的这种协同努力将使可信赖且可解释的人工智能在医疗保健领域得到广泛应用。该项目的成果将被吸收到研究团队通过专门设计的项目开发的课程和暑期项目中,以培养具有值得信赖和可解释的人工智能的学生。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Xing其他文献

What is Your Data Worth to GPT? LLM-Scale Data Valuation with Influence Functions
您的数据对 GPT 有何价值?
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sang Keun Choe;Hwijeen Ahn;Juhan Bae;Kewen Zhao;Minsoo Kang;Youngseog Chung;Adithya Pratapa;W. Neiswanger;Emma Strubell;Teruko Mitamura;Jeff Schneider;Eduard Hovy;Roger Grosse;Eric Xing
  • 通讯作者:
    Eric Xing
Bayesian haplo-type inference via the dirichlet process
通过狄利克雷过程进行贝叶斯单倍型推断
SegMix: A Simple Structure-Aware Data Augmentation Method
SegMix:一种简单的结构感知数据增强方法
  • DOI:
    10.48550/arxiv.2311.09505
  • 发表时间:
    2023-11-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuxin Pei;Pushkar Bhuse;Zhengzhong Liu;Eric Xing
  • 通讯作者:
    Eric Xing
Thesis Proposal
论文提案
  • DOI:
    10.1007/978-3-319-25670-2_6
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Siddhartha Jain;Jaime Carbonell;Eric Xing;Naftali Kaminski
  • 通讯作者:
    Naftali Kaminski
Follow My Instruction and Spill the Beans: Scalable Data Extraction from Retrieval-Augmented Generation Systems
按照我的指示泄露秘密:从检索增强生成系统中提取可扩展的数据
  • DOI:
    10.48550/arxiv.2402.17840
  • 发表时间:
    2024-02-27
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenting Qi;Hanlin Zhang;Eric Xing;S. Kakade;Hima Lakkaraju
  • 通讯作者:
    Hima Lakkaraju

Eric Xing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Xing', 18)}}的其他基金

III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
  • 批准号:
    2311990
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
ML Basis for Intelligence Augmentation:Toward Personalized Modeling, Reasoning under Data-Knowledge Symbiosis, and Interpretable Interaction for AI-assisted Human Decision-making
智能增强的机器学习基础:面向人工智能辅助人类决策的个性化建模、数据知识共生下的推理和可解释的交互
  • 批准号:
    2040381
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
CNS Core: Small: Toward Globally-Optimal Resource Distribution and Computation Acceleration in Multi-Tenant and Heterogeneous Machine Learning Systems
CNS 核心:小型:在多租户和异构机器学习系统中实现全局最优资源分配和计算加速
  • 批准号:
    2008248
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
XPS: FULL: Broad-Purpose, Aggressively Asynchronous and Theoretically Sound Parallel Large-scale Machine Learning
XPS:FULL:用途广泛、积极异步且理论上合理的并行大规模机器学习
  • 批准号:
    1629559
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
III: Small: A New Approach to Latent Space Learning with Diversity-Inducing Regularization and Applications to Healthcare Data Analytics
III:小型:具有多样性诱导正则化的潜在空间学习新方法及其在医疗保健数据分析中的应用
  • 批准号:
    1617583
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Theory and Algorithms for Parallel Probabilistic Inference with Big Data, via Big Model, in Realistic Distributed Computing Environments
BIGDATA:F:DKA:协作研究:在现实分布式计算环境中通过大模型进行大数据并行概率推理的理论和算法
  • 批准号:
    1447676
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Efficient, Nonparametric and Local-Minimum-Free Latent Variable Models: With Application to Large-Scale Computer Vision and Genomics
III:小型:协作研究:高效、非参数和局部最小自由潜变量模型:应用于大规模计算机视觉和基因组学
  • 批准号:
    1218282
  • 财政年份:
    2012
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: Using Large-Scale Image Data for Online Social Media Analysis
III:小:协作研究:使用大规模图像数据进行在线社交媒体分析
  • 批准号:
    1115313
  • 财政年份:
    2011
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Discovering and Exploiting Latent Communities in Social Media
协作研究:发现和利用社交媒体中的潜在社区
  • 批准号:
    1111142
  • 财政年份:
    2011
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
III-COR+RI: Novel Statistical Models and Algorithms for Network Modeling, Mining and Reverse Engineering
III-COR RI:用于网络建模、挖掘和逆向工程的新型统计模型和算法
  • 批准号:
    0713379
  • 财政年份:
    2007
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
  • 批准号:
    2306660
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research:SCH:Bimodal Interpretable Multi-Instance Medical-Image Classification
合作研究:SCH:双峰可解释多实例医学图像分类
  • 批准号:
    2306572
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
  • 批准号:
    2306659
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
  • 批准号:
    2306792
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Psychophysiological sensing to enhance mindfulness-based interventions for self-regulation of opioid cravings
合作研究:SCH:心理生理学传感,以增强基于正念的干预措施,以自我调节阿片类药物的渴望
  • 批准号:
    2320678
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了