CISE-ANR: FET: Small: Hybrid Stochastic Tunnel Junction Circuits for Optimization and Inference
CISE-ANR:FET:小型:用于优化和推理的混合随机隧道结电路
基本信息
- 批准号:2121957
- 负责人:
- 金额:$ 49.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Neuroscience research shows that pervasive randomness in brains is fundamental to their stability and computational ability. This observation inspires probabilistic models that are useful for a variety of learning and optimization tasks. Conventional computers are not well suited to solving such problems because they are fundamentally deterministic. In this work, the researchers propose to develop probabilistic unit cells by augmenting commercial computer chips with thermally unstable magnetic devices that naturally exhibit probabilistic behavior. Distributed networks of such devices will enable emulating and accelerating powerful stochastic computational models. Reverse engineering the brain is one of the major challenges of the 21st century. Such an endeavor will undoubtedly affect the way computation is understood. This proposal, inspired by a probabilistic interpretation of neural activity will develop a hybrid probabilistic technology as a prototype to efficiently transfer this insight into a tangible technology and then to the broader community. The research will require contributions of a diverse international team from a variety of fields such as material science, device physics, electrical engineering, and computer science. The results of this research will be disseminated in the form of publications, presentations, short pedagogical YouTube videos in various languages, and lab tours for the general public.Neuroscience research shows that pervasive randomness in brains is fundamental to their stability and computational ability. This observation inspires probabilistic models that are useful for a variety of learning and optimization tasks. Conventional computers are not well suited to solving such problems because they are fundamentally deterministic. In this work, the researchers propose to develop probabilistic unit cells by augmenting commercial computer chips with thermally unstable magnetic devices that naturally exhibit probabilistic behavior. Distributed networks of such devices will enable emulating and accelerating powerful stochastic computational models. Reverse engineering the brain is one of the major challenges of the 21st century. Such an endeavor will undoubtedly affect the way computation is understood. This proposal, inspired by a probabilistic interpretation of neural activity will develop a hybrid probabilistic technology as a prototype to efficiently transfer this insight into a tangible technology and then to the broader community. The research will require contributions of a diverse international team from a variety of fields such as material science, device physics, electrical engineering, and computer science. The results of this research will be disseminated in the form of publications, presentations, short pedagogical YouTube videos in various languages, and lab tours for the general public.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经科学研究表明,大脑中普遍存在的随机性是其稳定性和计算能力的基础。这一观察启发了可用于各种学习和优化任务的概率模型。传统计算机不太适合解决此类问题,因为它们从根本上来说是确定性的。在这项工作中,研究人员建议通过使用自然表现出概率行为的热不稳定磁性装置增强商用计算机芯片来开发概率单元。此类设备的分布式网络将能够模拟和加速强大的随机计算模型。 对大脑进行逆向工程是 21 世纪的主要挑战之一。这样的努力无疑会影响计算的理解方式。 该提案受到神经活动概率解释的启发,将开发一种混合概率技术作为原型,以有效地将这种洞察力转化为有形技术,然后转移到更广泛的社区。该研究需要来自材料科学、设备物理、电气工程和计算机科学等多个领域的多元化国际团队的贡献。这项研究的结果将以出版物、演示文稿、各种语言的 YouTube 教学短片以及供公众参观实验室的形式传播。 神经科学研究表明,大脑中普遍存在的随机性是其稳定性和计算能力的基础。这一观察启发了可用于各种学习和优化任务的概率模型。传统计算机不太适合解决此类问题,因为它们从根本上来说是确定性的。在这项工作中,研究人员建议通过使用自然表现出概率行为的热不稳定磁性装置增强商用计算机芯片来开发概率单元。此类设备的分布式网络将能够模拟和加速强大的随机计算模型。 对大脑进行逆向工程是 21 世纪的主要挑战之一。这样的努力无疑会影响计算的理解方式。 该提案受到神经活动概率解释的启发,将开发一种混合概率技术作为原型,以有效地将这种洞察力转化为有形技术,然后转移到更广泛的社区。该研究需要来自材料科学、设备物理、电气工程和计算机科学等多个领域的多元化国际团队的贡献。这项研究的结果将以出版物、演示文稿、各种语言的 YouTube 教学短片以及供公众参观实验室的形式传播。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,认为值得支持。智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Advait Madhavan其他文献
Advait Madhavan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
ANR与LAR在茶树表型儿茶素生物合成中的作用机制研究
- 批准号:31902070
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
构成酿酒葡萄重要品质的原花色素的合成关键酶基因表达特性研究
- 批准号:30871746
- 批准年份:2008
- 资助金额:33.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412550 - 财政年份:2024
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant
NSF-ANR MCB/PHY: Elucidating Plant Vascular Function and Dynamics in Planta and on Chip
NSF-ANR MCB/PHY:阐明植物体内和芯片上的植物血管功能和动力学
- 批准号:
2412533 - 财政年份:2024
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant
NSF-ANR: Precision of collective, distributed, dynamic gene regulation
NSF-ANR:集体、分布式、动态基因调控的精确性
- 批准号:
2209996 - 财政年份:2023
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant
Collaborative Research NSF-ANR: Mechanisms of Terminal Erythroid Enucleation
NSF-ANR 合作研究:终末红细胞剜除机制
- 批准号:
2210366 - 财政年份:2023
- 资助金额:
$ 49.73万 - 项目类别:
Continuing Grant