Collaborative Research: CCRI: ENS: Boa 2.0: Enhancing Infrastructure for Studying Software and its Evolution at a Large Scale

合作研究:CCRI:ENS:Boa 2.0:增强大规模研究软件及其演化的基础设施

基本信息

  • 批准号:
    2120448
  • 负责人:
  • 金额:
    $ 82.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

In today’s software-centric world, ultra-large-scale software repositories, e.g. GitHub, with hundreds of thousands of projects each, are the new library of Alexandria. They contain an enormous corpus of software and information about software. Scientists and engineers alike are interested in analyzing this wealth of information both for curiosity as well as for testing important research hypotheses. However, the current barrier to entry is prohibitive and only a few with well-established infrastructure and deep expertise can attempt such ultra-large-scale analysis. Necessary expertise includes: programmatically accessing version control systems, data storage and retrieval, data mining, and parallelization. The need to have expertise in these four different areas significantly increases the cost of scientific research that attempts to answer research questions involving ultra-large-scale software repositories. As a result, experiments are often not replicable, and reusability of experimental infrastructure low. Furthermore, data associated and produced by such experiments is often lost and becomes inaccessible and obsolete, because there is no systematic curation. Last but not least, building analysis infrastructure to process ultra-large-scale data efficiently can be very hard. This project will continue to enhance the CISE research infrastructure called Boa to aid and assist with such research. This next version of Boa will be called Boa 2.0 and it will continue to be globally disseminated. The project will further develop the programming language also called Boa, that can hide the details of programmatically accessing version control systems, data storage and retrieval, data mining, and parallelization from the scientists and engineers and allow them to focus on the program logic. The project will also enhance the data mining infrastructure for Boa, and a BIGDATA repository containing millions of open source project for analyzing ultra-large-scale software repositories to help with such experiments. The project will integrate Boa 2.0 with the Center for Open Science Open Science Framework (OSF) to improve reproducibility and with the national computing resource XSEDE to improve scalability. The broader impacts of Boa 2.0 stem from its potential to enable developers, designers and researchers to build intuitive, multi-modal, user-centric, scientific applications that can aid and enable scientific research on individual, social, legal, policy, and technical aspects of open source software development. This advance will primarily be achieved by significantly lowering the barrier to entry and thus enabling a larger and more ambitious line of data-intensive scientific discovery in this area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在当今以软件为中心的世界中,超大规模的软件存储库(例如 GitHub)是亚历山大的新图书馆,它们包含大量的软件和有关软件的信息。有兴趣分析这些丰富的信息,既是出于好奇,也是为了测试重要的研究假设。然而,目前的进入壁垒令人望而却步,只有少数拥有完善基础设施和深厚专业知识的人才能尝试如此大规模的研究。必要的专业知识包括:以编程方式访问版本控制系统、数据存储和检索、数据挖掘以及并行化。对这四个不同领域的专业知识的需求显着增加了试图回答涉及超大规模的研究问题的科学研究的成本。因此,实验通常不可复制,实验基础设施的可重用性也很低,而且,由于没有系统性的管理,此类实验产生的数据常常会丢失、无法访问和过时。但并非最不重要的是,构建有效处理超大规模数据的分析基础设施可能非常困难,该项目将继续增强名为 Boa 的 CISE 研究基础设施,以帮助和协助此类研究。Boa 的下一个版本将称为 Boa。 2.0 并将继续在全球范围内进一步传播,该项目将开发也称为 Boa 的编程语言,该语言可以向科学家和工程师隐藏以编程方式访问版本控制系统、数据存储和检索、数据挖掘以及并行化的细节。该项目还将增强 Boa 的数据挖掘基础设施,以及包含数百万个开源项目的 BIGDATA 存储库,用于分析超大规模软件存储库,以帮助进行此类实验。 Boa 2.0 与开放科学中心开放科学框架 (OSF) 一起提高可重复性,并与国家计算资源 XSEDE 一起提高可扩展性 Boa 2.0 的更广泛影响源于其为开发人员、设计人员提供支持的潜力。和研究人员构建直观、多模式、以用户为中心的科学应用程序,这些应用程序可以帮助和支持开源软件开发的个人、社会、法律、政策和技术方面的科学研究。这一进步主要是通过显着降低成本来实现的。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
What Kinds of Contracts Do ML APIs Need?
ML API 需要什么类型的合约?
  • DOI:
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Khairunnesa, Samantha Syeda;Ahmed, Shibbir;Imtiaz, Sayem Mohammad;Rajan, Hridesh;Leavens, Gary T.
  • 通讯作者:
    Leavens, Gary T.
Mutation-based Fault Localization of Deep Neural Networks
基于变异的深度神经网络故障定位
Decomposing a Recurrent Neural Network into Modules for Enabling Reusability and Replacement
将循环神经网络分解为模块以实现可重用和替换
Towards Understanding Fairness and its Composition in Ensemble Machine Learning
理解集成机器学习中的公平性及其构成
Fairify: Fairness Verification of Neural Networks
Fairify:神经网络的公平性验证
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hridesh Rajan其他文献

Consensus-based mining of API preconditions in big code
大代码中基于共识的 API 前提条件挖掘
Design Patterns : A Canonical Test of Unified Aspect Model
设计模式:统一方面模型的规范测试
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hridesh Rajan;Kevin Sullivan
  • 通讯作者:
    Kevin Sullivan
Gang-of-Four Design Patterns: A Case Study of the Unified Model and the Eos Programming Language
四联设计模式:统一模型和 Eos 编程语言的案例研究
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hridesh Rajan
  • 通讯作者:
    Hridesh Rajan
A Cyberinfrastructure for Big Data Transportation Engineering
大数据交通工程网络基础设施
A More Precise Abstract Domain for Multi-level Caches for Tighter WCET Analysis
更精确的多级缓存抽象域,用于更严格的 WCET 分析

Hridesh Rajan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hridesh Rajan', 18)}}的其他基金

SHF:Small: More Modular Deep Learning
SHF:Small:更加模块化的深度学习
  • 批准号:
    2223812
  • 财政年份:
    2022
  • 资助金额:
    $ 82.45万
  • 项目类别:
    Standard Grant
HDR TRIPODS: D4 (Dependable Data-Driven Discovery) Institute
HDR TRIPODS:D4(可靠数据驱动的发现)研究所
  • 批准号:
    1934884
  • 财政年份:
    2019
  • 资助金额:
    $ 82.45万
  • 项目类别:
    Continuing Grant
Travel Grant to Attend Big Data in Software Engineering Track
参加软件工程大数据课程的旅费补助
  • 批准号:
    1743070
  • 财政年份:
    2017
  • 资助金额:
    $ 82.45万
  • 项目类别:
    Standard Grant
Travel Grant to Attend Big Data in Software Engineering Track
参加软件工程大数据课程的旅费补助
  • 批准号:
    1743070
  • 财政年份:
    2017
  • 资助金额:
    $ 82.45万
  • 项目类别:
    Standard Grant
CI-EN: Boa: Enhancing Infrastructure for Studying Software and its Evolution at a Large Scale
CI-EN:Boa:增强大规模研究软件及其演化的基础设施
  • 批准号:
    1513263
  • 财政年份:
    2015
  • 资助金额:
    $ 82.45万
  • 项目类别:
    Standard Grant
SHF: Large:Collaborative Research: Inferring Software Specifications from Open Source Repositories by Leveraging Data and Collective Community Expertise
SHF:大型:协作研究:利用数据和集体社区专业知识从开源存储库推断软件规范
  • 批准号:
    1518897
  • 财政年份:
    2015
  • 资助金额:
    $ 82.45万
  • 项目类别:
    Standard Grant
SHF: Small: Capsule-oriented Programming
SHF:小型:面向胶囊的编程
  • 批准号:
    1423370
  • 财政年份:
    2014
  • 资助金额:
    $ 82.45万
  • 项目类别:
    Standard Grant
EAGER: Boa: A Community Research Infrastructure for Mining Software Repositories
EAGER:Boa:采矿软件存储库的社区研究基础设施
  • 批准号:
    1349153
  • 财政年份:
    2013
  • 资助金额:
    $ 82.45万
  • 项目类别:
    Standard Grant
SHF: Small: Phase-Based Tuning for Better Utilization of Performance-Asymmetric Multicores
SHF:小型:基于相位的调整,以更好地利用性能不对称的多核
  • 批准号:
    1117937
  • 财政年份:
    2011
  • 资助金额:
    $ 82.45万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Balancing Expressiveness and Modular Reasoning for Aspect-oriented Programming
SHF:小型:协作研究:平衡面向方面编程的表达性和模块化推理
  • 批准号:
    1017334
  • 财政年份:
    2010
  • 资助金额:
    $ 82.45万
  • 项目类别:
    Continuing Grant

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CCRI: New: A Research News Recommender Infrastructure with Live Users for Algorithm and Interface Experimentation
合作研究:CCRI:新:研究新闻推荐基础设施与实时用户进行算法和界面实验
  • 批准号:
    2232552
  • 财政年份:
    2023
  • 资助金额:
    $ 82.45万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: Planning-C: Enabling Computer Architecture Simulation as a Service
合作研究:CCRI:Planning-C:实现计算机架构仿真即服务
  • 批准号:
    2234401
  • 财政年份:
    2023
  • 资助金额:
    $ 82.45万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: Planning-C: A Community for Configurability Open Research and Development (ACCORD)
合作研究:CCRI:Planning-C:可配置性开放研究与开发社区 (ACCORD)
  • 批准号:
    2234909
  • 财政年份:
    2023
  • 资助金额:
    $ 82.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: CCRI:New: Data-Driven Cybersecurity Research Infrastructure for Smart Manufacturing
合作研究:研究基础设施:CCRI:新:数据驱动的智能制造网络安全研究基础设施
  • 批准号:
    2234973
  • 财政年份:
    2023
  • 资助金额:
    $ 82.45万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: Grand: Quori 2.0: Uniting, Broadening, and Sustaining a Research Community Around a Modular Social Robot Platform
协作研究:CCRI:盛大:Quori 2.0:围绕模块化社交机器人平台联合、扩大和维持研究社区
  • 批准号:
    2235042
  • 财政年份:
    2023
  • 资助金额:
    $ 82.45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了