Collaborative Research: SaTC: CORE: Medium: Foundations of Trust-Centered Multi-Agent Distributed Coordination

协作研究:SaTC:核心:媒介:以信任为中心的多智能体分布式协调的基础

基本信息

  • 批准号:
    2147631
  • 负责人:
  • 金额:
    $ 20.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

This project will develop the theoretical foundations of trust-centered resilience for distributed coordination and optimization of multi-agent systems in the presence of adversaries. The resilience is to be achieved by agents’ learning trustworthiness of their neighbors through local communications, which allows them to mitigate the detrimental impact of adversarial actions. In particular, the agents can identify and isolate the adversaries and, thus, the agents are able to sustain the desired system performance. Such resilient autonomous multi-agent systems are likely to play an important role in the future deployment of autonomous vehicle fleets, automated delivery systems (such as robots and drones), as well as physical and connected devices in our homes.The approach is to establish the theoretical foundations and analytical framework for efficient exploitation of stochastic "side information" found in the network, in order to arrive at provably stronger guarantees of resilience for multi-agent optimization problems. Malicious actions are addressed through probabilistic link-corruption models, which provides an important separation between the attack and its impact on the system. This separation is critical as it enables the development of trust models using statistical inference techniques. The resulting model is suitable for studying the impact of corrupted data on the resilience of multi-agent coordination and optimization tasks. The focus in this work is on deriving resilient distributed optimization algorithms and resilient consensus protocols that can tolerate more than half of the network connectivity being malicious; a classical requirement that this project aims to relax. Specific objectives of the project are to develop methods for distributed detection of an attack, attack mitigation, and characterization of attainable performance guarantees in the presence of adversaries. The contribution is a unified theory for understanding how inter-agent communications can be used to detect and isolate malicious agents, while provably quantifying their impact on system performance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发以信任为中心的基础,以在敌人存在下进行多代理茎的分布式协调和优化。对抗性授权的有害影响,代理可以隔离对手和LE,以维持所需的系统性能。我们的房屋。在网络中发现的剥削性方面的理论性建筑框架,在可证明的强大的鸟鸟类的Orrive中。分离是至关重要ECT的旨在放松该项目的特定目标是在贡献中降低攻击的检测。它们对系统性能的影响。该奖项反映了NSF'SF'Story D任务D被认为是值得通过Toundation的知识分子优点和更广泛影响的评论标准来评估的。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Resilience to Malicious Activity in Distributed Optimization for Cyberphysical Systems
Exploiting Trust for Resilient Hypothesis Testing with Malicious Robots
On Differential Privacy for Wireless Federated Learning with Non-coherent Aggregation
Collaborative Mean Estimation over Intermittently Connected Networks with Peer-To-Peer Privacy
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Goldsmith其他文献

Capacity Bounds and Exact Results for the Cognitive Z-interference Channel
认知 Z 干扰通道的容量界限和精确结果
Variable-rate coded MQAM for fading channels
用于衰落信道的可变速率编码 MQAM
President’s Council of Advisors on Science and Technology (PCAST)
总统科学技术顾问委员会 (PCAST​​)
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Zuber;M. Adams;D. Arvizu;J. Banovetz;Ash Carter;F. Colón;L. Cooper;W. Dally;Sue Desmond;Inez Fung;Andrea Goldsmith;Laura H. Greene;P. Hammond;J. Kiani;J. Levin;S. Perlmutter;Penny Pritzker;J. Richeson;Vicki L. Sato;Kathryn D. Sullivan;C. Woteki
  • 通讯作者:
    C. Woteki
Energy Minimization via Joint Caching and Power Control in Wireless Heterogeneous Networks
通过无线异构网络中的联合缓存和功率控制实现能量最小化

Andrea Goldsmith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Goldsmith', 18)}}的其他基金

NSF/ENG/ECCS-BSF: Sensing and Estimation under Energy and Communication Constraints
NSF/ENG/ECCS-BSF:能源和通信约束下的传感和估计
  • 批准号:
    1609695
  • 财政年份:
    2016
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Event-Based Information Acquisition, Learning, and Control in High-Dimensional Cyber-Physical Systems
CPS:协同:协作研究:高维网络物理系统中基于事件的信息获取、学习和控制
  • 批准号:
    1330081
  • 财政年份:
    2013
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
CIF: Small: Fundamental Performance Limits And Design Techniques For Sub-Sampled Communication Systems
CIF:小型:子采样通信系统的基本性能限制和设计技术
  • 批准号:
    1320628
  • 财政年份:
    2013
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Power Combining Networks for MIMO Transmission
用于 MIMO 传输的功率组合网络
  • 批准号:
    1256548
  • 财政年份:
    2013
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
ITR: Cross-Layer Design of Ad-Hoc Wireless Networks for Real-Time Media
ITR:实时媒体自组织无线网络的跨层设计
  • 批准号:
    0325639
  • 财政年份:
    2003
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
Collaborative Research on Distributed Control and Communication Design for Networked Dynamic Systems
网络化动态系统分布式控制与通信设计协同研究
  • 批准号:
    0120912
  • 财政年份:
    2001
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
CAREER: Networking and Communication Techniques for Wireless Applications
职业:无线应用的网络和通信技术
  • 批准号:
    9501452
  • 财政年份:
    1995
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了