Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
基本信息
- 批准号:2147546
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Emerging data science applications require efficient extraction of actionable insights from large and messy datasets. The number of relevant features often overwhelms the volume of data that is available, which dramatically complicates the statistical inference tasks and subsequent decision making. In the existing statistical literature, most of theory aims at understanding the average or global behavior of a statistical estimator in high dimensions. In many applications, however, it is often the case that the goal is not to explore the global behavior of a parameter estimator, but rather to perform inference and reasoning on its local, yet important, operational properties. The techniques and methods developed in the project will further advance the interplay between a broad range of areas including high-dimensional statistics, harmonic analysis, statistical physics, optimization, complex analysis, and statistical machine learning. The project provides research training opportunities for graduate students.This project pursues fine-grained inferential procedures and theory, aimed at enlarging the uncertainty assessment toolbox for various low-complexity models in high dimensions. Focusing on a few stylized problems, this research program consists of four major thrusts: (1) construct optimal confidence intervals for linear functionals of eigenvectors in low-rank matrix estimation; (2) design fine-grained hypothesis testing procedures for sparse regression under general designs; (3) develop entry-wise inference schemes for principal component analysis with missing data; and (4) conduct reliable and adaptive statistical eigen-analysis under minimal eigen-gaps. Emphasis is placed on algorithms that are model-agnostic and fully adaptive to data heteroscedasticity. Addressing these issues calls for the development of new statistical theory that enables reliable inference for a broad class of local properties underlying the unknown parameters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新兴的数据科学应用程序需要有效地从大而混乱的数据集中提取可起作用的见解。相关功能的数量通常淹没了可用的数据量,这极大地使统计推断任务和随后的决策变得复杂。在现有的统计文献中,大多数理论旨在了解高维度统计估计器的平均或全球行为。但是,在许多应用中,通常情况下,目标不是探索参数估计器的全局行为,而是在其本地但重要的操作属性上执行推理和推理。 项目中开发的技术和方法将进一步推进广泛领域之间的相互作用,包括高维统计,谐波分析,统计物理学,优化,复杂分析和统计机器学习。该项目为研究生提供了研究培训机会。该项目追求细粒度的推论程序和理论,旨在扩大高维度各种低复杂模型的不确定性评估工具箱。该研究计划着眼于一些程式化的问题,包括四个主要推力:(1)在低级别基质估计中,特征向量线性功能的最佳置信区间; (2)设计在一般设计下稀疏回归的精细颗粒假设测试程序; (3)开发出参赛推理方案,用于主要组件分析,并且缺少数据; (4)在最小的本征间内进行可靠和适应性统计本征分析。重点放在模型敏捷的算法上,并且完全适应数据异质性。解决这些问题需要开发新的统计理论,该理论能够对未知参数的一系列本地财产进行可靠的推论。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的审查标准通过评估来获得支持的。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Debiasing Evaluations That are Biased by Evaluations
- DOI:10.1609/aaai.v35i11.17214
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Jingyan Wang;Ivan Stelmakh;Yuting Wei
- 通讯作者:Jingyan Wang;Ivan Stelmakh;Yuting Wei
Tackling Small Eigen-Gaps: Fine-Grained Eigenvector Estimation and Inference Under Heteroscedastic Noise
- DOI:10.1109/tit.2021.3111828
- 发表时间:2021-11-01
- 期刊:
- 影响因子:2.5
- 作者:Cheng, Chen;Wei, Yuting;Chen, Yuxin
- 通讯作者:Chen, Yuxin
Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and Variance Reduction
- DOI:10.1109/tit.2021.3120096
- 发表时间:2020-06
- 期刊:
- 影响因子:2.5
- 作者:Gen Li;Yuting Wei;Yuejie Chi;Yuantao Gu;Yuxin Chen
- 通讯作者:Gen Li;Yuting Wei;Yuejie Chi;Yuantao Gu;Yuxin Chen
Derandomizing Knockoffs
- DOI:10.1080/01621459.2021.1962720
- 发表时间:2020-12
- 期刊:
- 影响因子:3.7
- 作者:Zhimei Ren;Yuting Wei;E. Candès
- 通讯作者:Zhimei Ren;Yuting Wei;E. Candès
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuting Wei其他文献
Nomogram model on estimating the risk of pressure injuries for hospitalized patients in the intensive care unit.
评估重症监护病房住院患者压力性损伤风险的列线图模型。
- DOI:
10.1016/j.iccn.2023.103566 - 发表时间:
2023 - 期刊:
- 影响因子:5.3
- 作者:
Lin Han;Yuting Wei;Juhong Pei;Hongyan Zhang;Lin Lv;Hongxia Tao;Qiuxia Yang;Qian Su;Yuxia Ma - 通讯作者:
Yuxia Ma
A flexible PEO-based polymer electrolyte with cross-linked network for high-voltage all solid-state lithium-ion battery
一种用于高压全固态锂离子电池的柔性交联网络PEO基聚合物电解质
- DOI:
10.1016/j.jmst.2023.10.005 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Nian Wang;Yuting Wei;Shuang Yu;Wenchao Zhang;Xiaoyu Huang;Binbin Fan;Hua Yuan;Yeqiang Tan - 通讯作者:
Yeqiang Tan
Improved design method for line gear pair based on screw theory
基于螺旋理论的线齿轮副改进设计方法
- DOI:
10.1007/s12206-022-0324-2 - 发表时间:
2022-03 - 期刊:
- 影响因子:1.6
- 作者:
Jiang Ding;Liwei Liu;Yuting Wei;Aiping Deng - 通讯作者:
Aiping Deng
Advances in chondroitinase delivery for spinal cord repair.
软骨素酶递送用于脊髓修复的进展。
- DOI:
10.31083/j.jin2104118 - 发表时间:
2022 - 期刊:
- 影响因子:1.8
- 作者:
Yuting Wei;Melissa R. Andrews - 通讯作者:
Melissa R. Andrews
From Gauss to Kolmogorov: Localized Measures of Complexity for Ellipses
从高斯到柯尔莫哥洛夫:椭圆复杂性的局部度量
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.1
- 作者:
Yuting Wei;Billy Fang;M. Wainwright - 通讯作者:
M. Wainwright
Yuting Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuting Wei', 18)}}的其他基金
CAREER: Statistical Learning from a Modern Perspective: Over-parameterization, Regularization, and Generalization
职业:现代视角下的统计学习:过度参数化、正则化和泛化
- 批准号:
2143215 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
- 批准号:
2015447 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
- 批准号:
2348589 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
- 批准号:
2311878 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Efficacy and Durability of Microbially Induced Desaturation to Mitigate Liquefaction in Fine-grained Soils
合作研究:微生物诱导去饱和缓解细粒土壤液化的功效和持久性
- 批准号:
2242227 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
- 批准号:
2311875 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
- 批准号:
2311876 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant