Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
基本信息
- 批准号:2147546
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Emerging data science applications require efficient extraction of actionable insights from large and messy datasets. The number of relevant features often overwhelms the volume of data that is available, which dramatically complicates the statistical inference tasks and subsequent decision making. In the existing statistical literature, most of theory aims at understanding the average or global behavior of a statistical estimator in high dimensions. In many applications, however, it is often the case that the goal is not to explore the global behavior of a parameter estimator, but rather to perform inference and reasoning on its local, yet important, operational properties. The techniques and methods developed in the project will further advance the interplay between a broad range of areas including high-dimensional statistics, harmonic analysis, statistical physics, optimization, complex analysis, and statistical machine learning. The project provides research training opportunities for graduate students.This project pursues fine-grained inferential procedures and theory, aimed at enlarging the uncertainty assessment toolbox for various low-complexity models in high dimensions. Focusing on a few stylized problems, this research program consists of four major thrusts: (1) construct optimal confidence intervals for linear functionals of eigenvectors in low-rank matrix estimation; (2) design fine-grained hypothesis testing procedures for sparse regression under general designs; (3) develop entry-wise inference schemes for principal component analysis with missing data; and (4) conduct reliable and adaptive statistical eigen-analysis under minimal eigen-gaps. Emphasis is placed on algorithms that are model-agnostic and fully adaptive to data heteroscedasticity. Addressing these issues calls for the development of new statistical theory that enables reliable inference for a broad class of local properties underlying the unknown parameters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新兴的数据科学应用需要从庞大而混乱的数据集中有效提取可操作的见解。相关特征的数量通常会超过可用数据量,这使得统计推断任务和后续决策变得非常复杂。在现有的统计文献中,大多数理论旨在理解高维统计估计量的平均或全局行为。然而,在许多应用中,通常的情况是,目标不是探索参数估计器的全局行为,而是对其局部但重要的操作属性进行推理和推理。 该项目开发的技术和方法将进一步促进高维统计、调和分析、统计物理、优化、复杂分析和统计机器学习等广泛领域之间的相互作用。该项目为研究生提供研究培训机会。该项目追求细粒度的推理程序和理论,旨在扩大高维各种低复杂度模型的不确定性评估工具箱。该研究项目重点关注一些典型问题,包括四个主要方向:(1)构建低秩矩阵估计中特征向量线性函数的最佳置信区间; (2) 为一般设计下的稀疏回归设计细粒度的假设检验程序; (3) 开发用于缺失数据的主成分分析的逐项推理方案; (4) 在最小特征间隙下进行可靠且自适应的统计特征分析。重点放在与模型无关且完全适应数据异方差性的算法上。解决这些问题需要开发新的统计理论,从而能够对未知参数下的广泛局部属性进行可靠的推断。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Debiasing Evaluations That are Biased by Evaluations
- DOI:10.1609/aaai.v35i11.17214
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Jingyan Wang;Ivan Stelmakh;Yuting Wei
- 通讯作者:Jingyan Wang;Ivan Stelmakh;Yuting Wei
Tackling Small Eigen-Gaps: Fine-Grained Eigenvector Estimation and Inference Under Heteroscedastic Noise
- DOI:10.1109/tit.2021.3111828
- 发表时间:2021-11-01
- 期刊:
- 影响因子:2.5
- 作者:Cheng, Chen;Wei, Yuting;Chen, Yuxin
- 通讯作者:Chen, Yuxin
Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and Variance Reduction
- DOI:10.1109/tit.2021.3120096
- 发表时间:2020-06
- 期刊:
- 影响因子:2.5
- 作者:Gen Li;Yuting Wei;Yuejie Chi;Yuantao Gu;Yuxin Chen
- 通讯作者:Gen Li;Yuting Wei;Yuejie Chi;Yuantao Gu;Yuxin Chen
Derandomizing Knockoffs
- DOI:10.1080/01621459.2021.1962720
- 发表时间:2020-12
- 期刊:
- 影响因子:3.7
- 作者:Zhimei Ren;Yuting Wei;E. Candès
- 通讯作者:Zhimei Ren;Yuting Wei;E. Candès
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuting Wei其他文献
Nomogram model on estimating the risk of pressure injuries for hospitalized patients in the intensive care unit.
评估重症监护病房住院患者压力性损伤风险的列线图模型。
- DOI:
10.1016/j.iccn.2023.103566 - 发表时间:
2023 - 期刊:
- 影响因子:5.3
- 作者:
Lin Han;Yuting Wei;Juhong Pei;Hongyan Zhang;Lin Lv;Hongxia Tao;Qiuxia Yang;Qian Su;Yuxia Ma - 通讯作者:
Yuxia Ma
A flexible PEO-based polymer electrolyte with cross-linked network for high-voltage all solid-state lithium-ion battery
一种用于高压全固态锂离子电池的柔性交联网络PEO基聚合物电解质
- DOI:
10.1016/j.jmst.2023.10.005 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Nian Wang;Yuting Wei;Shuang Yu;Wenchao Zhang;Xiaoyu Huang;Binbin Fan;Hua Yuan;Yeqiang Tan - 通讯作者:
Yeqiang Tan
Minimax-Optimal Multi-Agent RL in Zero-Sum Markov Games With a Generative Model
具有生成模型的零和马尔可夫博弈中的极小最大最优多智能体强化学习
- DOI:
10.48550/arxiv.2208.10458 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Gen Li;Yuejie Chi;Yuting Wei;Yuxin Chen - 通讯作者:
Yuxin Chen
Wheel Loader Duty Cycle Test and Numerical Expression Research
轮式装载机工作循环试验及数值表达式研究
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Naiwei Zou;Yuting Wei;Dashuai Zhou;Yongfeng Miao - 通讯作者:
Yongfeng Miao
Stabilized finite element methods for miscible displacement in porous media
- DOI:
10.1051/m2an/1994280506111 - 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Yuting Wei - 通讯作者:
Yuting Wei
Yuting Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuting Wei', 18)}}的其他基金
CAREER: Statistical Learning from a Modern Perspective: Over-parameterization, Regularization, and Generalization
职业:现代视角下的统计学习:过度参数化、正则化和泛化
- 批准号:
2143215 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
- 批准号:
2015447 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
- 批准号:52364012
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
- 批准号:32301770
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
- 批准号:52302362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
- 批准号:72302108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
- 批准号:32300133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
- 批准号:
2348589 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
- 批准号:
2311878 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Efficacy and Durability of Microbially Induced Desaturation to Mitigate Liquefaction in Fine-grained Soils
合作研究:微生物诱导去饱和缓解细粒土壤液化的功效和持久性
- 批准号:
2242227 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
- 批准号:
2311875 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
- 批准号:
2311876 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant