DMREF/Collaborative Research: Computationally Driven Design of Synthetic Tissue-Like Multifunctional Materials

DMREF/合作研究:合成组织类多功能材料的计算驱动设计

基本信息

  • 批准号:
    2119716
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

In nature, living cells join to form tissues capable of collective behaviors, such as sensing and responding to external cues, communicating, sorting and storing chemical species, and adapting their mechanical properties to sustain necessary loads. Biological tissues achieve these desirable properties because of careful control over the contents, arrangements, and interconnections of individual cells, an approach that yields hierarchical materials with high levels of adaptability, responsiveness, and tunable mechanical strength. Replicating these types of emergent properties in synthetic materials remains a major engineering challenge. This Designing Materials to Revolutionize and Engineer our Future (DMREF) award supports basic research and scientific development of material systems that mimic the composition, organization, and properties of living tissues. The computationally led designs of tissues-like materials with precise compositions and spatial arrangements seek to offer a generalizable solution for applications in artificial tissue replacement, wound healing, soft robotics, and embedded computing technologies. In addition, the project will support the technical and professional development of the STEM workforce by promoting the participation of high school, undergraduate, and graduate students, especially from the first-generation and underrepresented groups, through various outreach and research activities.This project aims to study synthetic tissues comprised of independent cell-like compartments coupled hierarchically through mechanical tethering (i.e., self-assembling block copolymer microgels (BCPs) as synthetic cytoskeleton) and selective transport (i.e., protein-enriched biomimetic membranes (BMs) as selective barriers) mechanisms and incorporating stimuli-responsiveness (e.g., via polymers and membrane proteins) into the compartments. Computational approaches combine molecular transport, stimuli-responsive coupled deformations of BCPs, intercompartment adhesion, and biomembrane mechanics to predict failure behaviors, emergent properties, and functionalities of tissue-like assemblies. An iterative feedback loop between theory, computations, synthesis of BCPs, 3D bioprinting, and microscale mechanical characterization is central to the project for validating predictions, informing model development, and creating a modular database. The construction of a compartmentalized material system that exhibits selective internal transport pathways via lipid- and protein-based BMs and tunable mechanical properties via BCPs will be achieved by understanding how the tunable hydrophobic and hydrophilic regions of BCPs: 1) interact with amphiphilic BMs at the nanoscale; 2) self-assemble and entangle to form solid-like gels at the microscale; 3) cross-link between compartments at the macroscale to rigidify the entire assembly. Ultimately, this project will provide the quantitative knowledge base and modular design criteria to accelerate the assembly and use of compartmentalized tissue-like materials that are multifunctional, stimuli-responsive, adaptable, tough, and operate outside of equilibrium.This project is co-funded by the Division of Civil, Mechanical and Manufacturing Innovation in the Directorate for Engineering and the Division of Materials Research in the Directorate for Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在自然界中,活细胞结合形成能够进行集体行为的组织,例如感知和响应外部信号、交流、分类和存储化学物质,以及调整其机械性能以维持必要的负载。生物组织之所以能实现这些理想的特性,是因为对单个细胞的内容、排列和互连进行了仔细控制,这种方法可以产生具有高水平适应性、响应性和可调节机械强度的分层材料。在合成材料中复制这些类型的新兴特性仍然是一个重大的工程挑战。该“设计材料以彻底改变和设计我们的未来”(DMREF) 奖项支持模拟活体组织的组成、组织和特性的材料系统的基础研究和科学开发。具有精确成分和空间排列的类组织材料的计算主导设计旨在为人工组织替代、伤口愈合、软机器人和嵌入式计算技术的应用提供通用的解决方案。此外,该项目还将通过各种外展和研究活动,促进高中生、本科生和研究生,特别是第一代和代表性不足群体的参与,支持 STEM 劳动力的技术和专业发展。该项目的目标研究由独立的细胞样区室组成的合成组织,这些区室通过机械束缚(即自组装嵌段共聚物微凝胶(BCP)作为合成细胞骨架)和选择性运输(即富含蛋白质的蛋白质)分层耦合仿生膜(BM)作为选择性屏障)机制并将刺激响应性(例如通过聚合物和膜蛋白)纳入隔室中。计算方法结合分子输运、BCP 的刺激响应耦合变形、室间粘附和生物膜力学来预测类组织组件的失效行为、突发特性和功能。理论、计算、BCP 合成、3D 生物打印和微尺度机械表征之间的迭代反馈循环是该项目验证预测、为模型开发提供信息和创建模块化数据库的核心。通过了解 BCP 的可调节疏水性和亲水性区域如何实现,可以构建一个隔室材料系统,该系统通过基于脂质和蛋白质的 BM 表现出选择性内部运输途径,并通过 BCP 实现可调节的机械性能:1)与两亲性 BM 相互作用纳米级; 2)在微观尺度上自组装、缠结形成类固体凝胶; 3)在宏观尺度上隔室之间的交联以加固整个组件。最终,该项目将提供定量知识库和模块化设计标准,以加速多功能、刺激响应、适应性强、坚韧且在非平衡状态下运行的分区组织类材料的组装和使用。该项目由共同资助由工程理事会土木、机械和制造创新司以及数学和物理科学理事会材料研究司颁发。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A novel constitutive model for surface elasticity at finite strains suitable across compressibility spectrum
适合整个压缩谱的有限应变下表面弹性的新型本构模型
Modeling curvature-resisting material surfaces with isogeometric analysis
通过等几何分析对抗曲率材料表面进行建模
Nanostructured block copolymer muscles
纳米结构嵌段共聚物肌肉
  • DOI:
    10.1038/s41565-022-01133-0
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    38.3
  • 作者:
    Lang, Chao;Lloyd, Elisabeth C.;Matuszewski, Kelly E.;Xu, Yifan;Ganesan, Venkat;Huang, Rui;Kumar, Manish;Hickey, Robert J.
  • 通讯作者:
    Hickey, Robert J.
Surface elasticity and area incompressibility regulate fiber beading instability
表面弹性和面积不可压缩性调节纤维成珠的不稳定性
Plateau Rayleigh instability of soft elastic solids. Effect of compressibility on pre and post bifurcation behavior
软弹性固体的高原瑞利不稳定性。
  • DOI:
    10.1016/j.eml.2022.101797
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    B. Dortdivanlioglu;A. Javili
  • 通讯作者:
    A. Javili
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Berkin Dortdivanlioglu其他文献

AI-dente: an open machine learning based tool to interpret nano-indentation data of soft tissues and materials
  • DOI:
    10.1039/d3sm00402c
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Patrick Giolando;Sotirios Kakaletsis;Xuesong Zhang;Johannes Weickenmeier;Edward Castillo;Berkin Dortdivanlioglu;Manuel K. Rausch
  • 通讯作者:
    Manuel K. Rausch
Understanding the mechanical link between oriented cell division and cerebellar morphogenesis
  • DOI:
    10.1039/c8sm02231c
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Emma Lejeune;Berkin Dortdivanlioglu;Ellen Kuhl;Christian Linder
  • 通讯作者:
    Christian Linder

Berkin Dortdivanlioglu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Berkin Dortdivanlioglu', 18)}}的其他基金

Collaborative Research: Exploring the Role of Ultra-Soft Inclusions in the Mechanics of Fibrous Materials
合作研究:探索超软夹杂物在纤维材料力学中的作用
  • 批准号:
    2235856
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
  • 批准号:
    2323118
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: De Novo Proteins as Junctions in Polymer Networks
合作研究:DMREF:De Novo 蛋白质作为聚合物网络中的连接点
  • 批准号:
    2323316
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了