CAREER: Organelle Networks Orient Cilia and First-Generation College Students for Success

职业:细胞器网络引导纤毛和第一代大学生走向成功

基本信息

  • 批准号:
    2146516
  • 负责人:
  • 金额:
    $ 90.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).The goal of this project is to investigate the mechanisms that position cilia across the surface of cells. Cilia are evolutionarily ancient hair-like appendages that are critical for cell movement and sensation. Understanding how cilia are positioned is important because the position of cilia affects how both terrestrial and aquatic organisms acquire nutrients, sense their environment, and reproduce. This research is based on the hypothesis that networks of interconnected organelles determine where cilia form, how cilia sense molecules, and how cilia move fluid. This research will be conducted by a team of primarily undergraduate student scientists, who will gain experience in cutting-edge fluorescence microscopy, image analysis, and genetic manipulation of evolutionarily divergent cells. The scientific data generated through the proposal will be used to create an interdisciplinary mathematical modeling curriculum for teaching diffusion within cilia. Beyond teaching and scientific research, a major goal of this project is to form a longitudinal mentoring program for aspiring first-generation college students. During year 1 of the project, a cohort of 9th grade students will be assembled from a local low-income high school that qualifies for federal college preparation assistance (GEAR UP). Throughout their high school career, this cohort will engage in cell biology research to understand how water pollution in a local river impacts cilia movement. Student scientific training will be complemented with family engagement, enrichment activities and college application assistance to increase the likelihood that these students enroll in STEM undergraduate programs at the completion of the project. American Rescue Plan funding of this project supports this researcher at a critical stage in his career. Cilia are microtubule-based structures that project from the surface of cells that span unicellular organisms, such as Tetrahymena, through multi-cellular organisms, such as humans. The molecular architecture of cilia is deeply conserved; in most organisms examined, cilia are composed of 9 radially symmetric doublet microtubules, called an axoneme, assembled on top of 9 radially symmetric triplet microtubules, called a basal body. Despite the strong conservation of cilia molecular architecture, the physical location of cilia relative to the geometry of the cell is not conserved. This project utilizes evolutionarily divergent cells to test hypotheses for how membrane-bound organelles adjacent to basal bodies participate in the positioning, signaling, and bending properties of cilia. The research will investigate interactions between membrane-bound organelles and basal bodies in both the unicellular protist Tetrahymena and cell cultures derived from mice and humans. This comparative approach aims to identify conserved mechanisms of cilia positioning using dynamic live-cell fluorescence microscopy, Förster Resonance Energy Transfer (FRET) quantified with Fluorescence Lifetime Imaging Microscopy (FLIM), ratiometric calcium microscopy, pharmacology, and genetic perturbations. Overall, the results from this project will reveal fundamental mechanisms that impact how cells position cilia relative to cellular geometry. These results have implications for how cilia are organized to maximize cellular motility in aquatic environments and the transduction of signals from the extracellular space.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来源于《2021 年美国救援计划法案》(公法 117-2)。该项目的目标是研究纤毛在细胞表面的定位机制。纤毛是进化上古老的毛发。了解纤毛的位置非常重要,因为纤毛的位置会影响陆地和水生生物获取营养、感知环境和繁殖的方式。假设相互连接的细胞器网络决定纤毛的形成位置、纤毛如何感知分子以及纤毛如何移动液体。这项研究将由一个主要由本科生科学家组成的团队进行,他们将获得尖端荧光显微镜、图像分析、通过该提案生成的科学数据将用于创建跨学科数学建模课程,用于教学和科学研究之外,该项目的一个主要目标是形成一个纵向指导计划。对于有抱负的在该项目的第一年,将从当地一所低收入高中召集一批有资格在整个高中生涯中获得联邦大学准备援助 (GEAR UP) 的 9 年级学生。将从事细胞生物学研究,以了解当地河流的水污染如何影响纤毛运动。学生的科学培训将辅以家庭参与、丰富活动和大学申请援助,以增加这些学生在完成后入读 STEM 本科课程的可能性。美国救援计划。该项目的资金支持了这位处于职业生涯关键阶段的研究人员。纤毛是一种基于微管的结构,从单细胞生物(如四膜虫)的细胞表面投射到多细胞生物(如人类)的分子结构。纤毛的结构是高度保守的;在所检查的大多数生物体中,纤毛由 9 个径向对称的双联微管(称为轴丝)组成,组装在 9 个径向对称的三联微管(称为轴丝)之上。尽管纤毛分子结构具有很强的保守性,但纤毛相对于细胞几何形状的物理位置并不保守。该项目利用进化上不同的细胞来测试与基底体相邻的膜结合细胞器如何参与的假设。该研究将研究单细胞原生生物四膜虫以及小鼠和人类细胞培养物中膜结合细胞器和基底体之间的相互作用。使用动态活细胞荧光显微镜、荧光寿命成像显微镜 (FLIM) 量化的福斯特共振能量转移 (FRET)、比率钙显微镜、药理学和遗传扰动来研究纤毛定位。总体而言,该项目的结果将揭示纤毛定位的基本机制。影响细胞相对于细胞几何形状的纤毛定位方式。这些结果对于纤毛如何组织以最大化水生环境中的细胞运动以及来自细胞的信号转导具有影响。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Domenico Galati其他文献

Role of mycobacteria-induced monocyte/macrophage apoptosis in the pathogenesis of human tuberculosis.
分枝杆菌诱导的单核细胞/巨噬细胞凋亡在人类结核病发病机制中的作用。

Domenico Galati的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Domenico Galati', 18)}}的其他基金

MRI: Acquisition of a multi-modal laser scanning confocal microscope to integrate research and teaching across spatial, evolutionary and ecological scales at WWU
MRI:购买多模态激光扫描共聚焦显微镜,以整合 WWU 跨空间、进化和生态尺度的研究和教学
  • 批准号:
    2019228
  • 财政年份:
    2020
  • 资助金额:
    $ 90.8万
  • 项目类别:
    Standard Grant

相似国自然基金

生理病理条件下肝脏脂代谢相关细胞器及其空间网络的原位分析
  • 批准号:
    32371191
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
人小开放阅读框编码肽的细胞器定位与蛋白质互作网络研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
细胞器互作网络及其功能研究
  • 批准号:
    92154001
  • 批准年份:
    2021
  • 资助金额:
    300 万元
  • 项目类别:
    重大研究计划
亚细胞器互作网络异常导致线粒体钙超载在心肌缺血再灌注损伤中的作用及机制研究
  • 批准号:
    82130011
  • 批准年份:
    2021
  • 资助金额:
    290 万元
  • 项目类别:
    重点项目
药物肝肾损伤的细胞器代谢组深度分析及代谢传递介导的互作网络解析
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Organelle teamwork: understanding how peroxisomes and mitochondria communicate in neuronal cell function
细胞器团队合作:了解过氧化物酶体和线粒体在神经细胞功能中如何沟通
  • 批准号:
    BB/Z514767/1
  • 财政年份:
    2024
  • 资助金额:
    $ 90.8万
  • 项目类别:
    Fellowship
Collaborative Research: Evolution of acquired phototrophy by organelle sequestration in Mesodinium ciliates
合作研究:中纤毛虫通过细胞器隔离获得的光养进化
  • 批准号:
    2344640
  • 财政年份:
    2024
  • 资助金额:
    $ 90.8万
  • 项目类别:
    Standard Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
  • 批准号:
    2337141
  • 财政年份:
    2024
  • 资助金额:
    $ 90.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Evolution of acquired phototrophy by organelle sequestration in Mesodinium ciliates
合作研究:中纤毛虫通过细胞器隔离获得的光养进化
  • 批准号:
    2344641
  • 财政年份:
    2024
  • 资助金额:
    $ 90.8万
  • 项目类别:
    Standard Grant
21EngBio: Organelle engineering for the production of useful bioproducts
21EngBio:用于生产有用生物产品的细胞器工程
  • 批准号:
    BB/W012111/1
  • 财政年份:
    2023
  • 资助金额:
    $ 90.8万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了