CAREER: Fast-Charging Energy Storage Devices Enabled by Modulating Internal Electric Field of Heterostructure

职业:通过调制异质结构内部电场实现快速充电储能装置

基本信息

  • 批准号:
    2144708
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Fast-charging capability, as one of the key features of energy storage devices, has drawn extensive interest. It holds great promise to expand or accelerate their applications in many areas, especially for fast-charging electric vehicles to replace internal combustion engine vehicles, as well as stabilizing energy storage from renewable energy sources that are inherently intermittent such as wind and wave energy. However, common energy storage devices, such as batteries, have exhibited severe degradation under fast charging conditions. This Career project is to develop a practical method to develop fast-charging energy storage devices by introducing an internal electric field in the electrode to improve the electrode kinetics and the device performance. The project will host Bootcamp to train rural middle and high school teachers in developing science curricula, equipping them to deliver enriching classroom activities and lectures. Moreover, the project will involve underrepresented students performing science and engineering related projects, especially Native Americans, women, and first-generation college students.The research objective of this Career project aims to develop a novel heterostructure in the electrode to improve the fast-charging capability of energy storage devices by more than 10 times compared with state-of-the-art research studies. Based on the preliminary studies, the central hypothesis is that an internal electric field, generated on the heterointerfaces can accelerate ion transport, enhance electrode kinetics by lowering the energy of activation, and hence improve the performance under fast-charging conditions. It is expected to address this challenge and fundamentally advance the correlation between the electric field of the heterostructure, and the resulting fast-charging performance at the energy storage device level. The major contributions to those multidisciplinary fields lie in several aspects. First, a fundamental understanding will be generated on the effect of the local electric field of the heterostructure on the diffusion coefficient and electrode kinetics. A simulation model will also be created to be integrated with experimental efforts. Second, a knowledge gap will be filled from the material properties of the electrode to the fast-charging functionality of the devices. Third, distinct from conventional nanostructure engineering approaches in state-of-the-art research studies, which have a complex and high-cost fabrication process, introducing a heterostructure in the electrode provides an effective, safe, facile, and transformative approach that remarkably enhances the charge transfer and holds great promise to resolve one of the biggest issues, “long charging time,” of existing energy storage devices. The fundamental study will also open a new door to resolving issues in other energy devices by modulating the electronic structures in the devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
作为储能设备的eaTuyy ofe ofe of thist充电能力引起了广泛的兴趣,它具有扩展或加速其在许多领域的应用,尤其是在快速充电的电动汽车上以替换内燃机的范围稳定的能量本质上固有地间歇性,例如风能,例如电池。该设备的性能将在开发科学课程的活动和讲座上培训Rurale和高中教师。与基于预预学研究的最先进的研究相比,电源储能设备的快速充电能力超过10倍以上,中心假设是中心假设是,在异质方面产生的内部电场可以加速加速,通过激活的能量来增强电极动力学,并在快速充电下改善了性能这些多学科领域的贡献是在几个方面的理解。电极到第三次的快速充电功能。现有储能设备的费用。基本研究还将通过设备中的电子结构在其他能源设备中发出的新大门。使用基金会的知识分子优点和更广泛的影响评估标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yue Zhou其他文献

Object Tracking within the Framework of Concept Drift
概念漂移框架内的对象跟踪
Development and Validation of a Finger Tremor Simulator
手指震颤模拟器的开发和验证
Enhance the luminescence properties of Ca14Al10Zn6O35:Ti4+ phosphor via cation vacancies engineering of Ca2+ and Zn2+
通过Ca2和Zn2的阳离子空位工程增强Ca14Al10Zn6O35:Ti4荧光粉的发光性能
  • DOI:
    10.1016/j.ceramint.2019.02.041
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Xianbo Wu;Longhai Liu;Mao Xia;Shengxiong Huang;Yue Zhou;Wang Hu;Zhi Zhou;Nan Zhou
  • 通讯作者:
    Nan Zhou
CAV-Enabled Active Resolving of Temporary Mainline Congestion Caused by Gap Creation for On-Ramp Merging Vehicles
支持 CAV 的主动解决因匝道合道车辆间隙造成的临时干线拥堵
Development of a tooth movement model of root resorption during intrusive orthodontic treatment.
侵入性正畸治疗期间牙根吸收的牙齿移动模型的开发。
  • DOI:
    10.4012/dmj.2022-247
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yue Zhou;Aki Nishiura;Hidetoshi Morikuni;T. Tsujibayashi;Y. Honda;N. Matsumoto
  • 通讯作者:
    N. Matsumoto

Yue Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yue Zhou', 18)}}的其他基金

Collaborative Research: Understanding and Tailoring the Anode-Electrolyte Interfacial Layers on the Stabilization of Lithium Metal Electrode
合作研究:理解和定制阳极-电解质界面层对锂金属电极稳定性的影响
  • 批准号:
    2312247
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RII Track-4 NSF: Novel Structure and Properties of Hybrid Electrolytes for Lithium Metal Batteries
RII Track-4 NSF:锂金属电池混合电解质的新颖结构和性能
  • 批准号:
    2132021
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SiemensEPSRC Digital Twin with Data-Driven Predictive Control: Unlocking Flexibility of Industrial Plants for Supporting a Net Zero Electricity System
具有数据驱动预测控制功能的西门子 EPSRC 数字孪生:释放工业工厂的灵活性,支持净零电力系统
  • 批准号:
    EP/W028573/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
CAREER: Fast-Charging Energy Storage Devices Enabled by Modulating Internal Electric Field of Heterostructure
职业:通过调制异质结构内部电场实现快速充电储能装置
  • 批准号:
    2240507
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Tailoring the Anode-Electrolyte Interfacial Layers on the Stabilization of Lithium Metal Electrode
合作研究:理解和定制阳极-电解质界面层对锂金属电极稳定性的影响
  • 批准号:
    2038082
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
  • 批准号:
    12373107
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于FAST观测的重复快速射电暴的统计和演化研究
  • 批准号:
    12303042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于神经网络的FAST馈源融合测量算法研究
  • 批准号:
    12363010
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
保障和提升FAST主动反射面性能的关键力学问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于FAST和SKA先导阵搜索高银纬脉冲星并研究其垂直银盘分布
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An innovative hybrid infrastructure system delivering both electric and hydrogen for vessel fast charging/refuelling using off grid renewable energy and onsite wastewater.
一种创新的混合基础设施系统,利用离网可再生能源和现场废水,为船舶快速充电/加油提供电力和氢气。
  • 批准号:
    10099143
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
CAREER: Organic Structure and Interphase Engineering for Fast-Charging, High-Temperature and Sustainable Batteries
职业:快速充电、高温和可持续电池的有机结构和相间工程
  • 批准号:
    2419947
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Understanding the surfaces of fast charging battery materials: SURF-FAST
了解快速充电电池材料的表面:SURF-FAST
  • 批准号:
    10060998
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
Building Australia's Electric Vehicle Fast Charging Infrastructure
建设澳大利亚电动汽车快速充电基础设施
  • 批准号:
    LP210200473
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Linkage Projects
The race to net zero necessitates the development of fast-charging and sustainable rechargeable batteries with long lifetimes and high capacity. One p
实现净零排放的竞赛需要开发具有长寿命和高容量的快速充电和可持续充电电池。
  • 批准号:
    2891660
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了