CAREER: Fast-Charging Energy Storage Devices Enabled by Modulating Internal Electric Field of Heterostructure
职业:通过调制异质结构内部电场实现快速充电储能装置
基本信息
- 批准号:2144708
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Fast-charging capability, as one of the key features of energy storage devices, has drawn extensive interest. It holds great promise to expand or accelerate their applications in many areas, especially for fast-charging electric vehicles to replace internal combustion engine vehicles, as well as stabilizing energy storage from renewable energy sources that are inherently intermittent such as wind and wave energy. However, common energy storage devices, such as batteries, have exhibited severe degradation under fast charging conditions. This Career project is to develop a practical method to develop fast-charging energy storage devices by introducing an internal electric field in the electrode to improve the electrode kinetics and the device performance. The project will host Bootcamp to train rural middle and high school teachers in developing science curricula, equipping them to deliver enriching classroom activities and lectures. Moreover, the project will involve underrepresented students performing science and engineering related projects, especially Native Americans, women, and first-generation college students.The research objective of this Career project aims to develop a novel heterostructure in the electrode to improve the fast-charging capability of energy storage devices by more than 10 times compared with state-of-the-art research studies. Based on the preliminary studies, the central hypothesis is that an internal electric field, generated on the heterointerfaces can accelerate ion transport, enhance electrode kinetics by lowering the energy of activation, and hence improve the performance under fast-charging conditions. It is expected to address this challenge and fundamentally advance the correlation between the electric field of the heterostructure, and the resulting fast-charging performance at the energy storage device level. The major contributions to those multidisciplinary fields lie in several aspects. First, a fundamental understanding will be generated on the effect of the local electric field of the heterostructure on the diffusion coefficient and electrode kinetics. A simulation model will also be created to be integrated with experimental efforts. Second, a knowledge gap will be filled from the material properties of the electrode to the fast-charging functionality of the devices. Third, distinct from conventional nanostructure engineering approaches in state-of-the-art research studies, which have a complex and high-cost fabrication process, introducing a heterostructure in the electrode provides an effective, safe, facile, and transformative approach that remarkably enhances the charge transfer and holds great promise to resolve one of the biggest issues, “long charging time,” of existing energy storage devices. The fundamental study will also open a new door to resolving issues in other energy devices by modulating the electronic structures in the devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》的全部或部分资助的(公共法117-2)。作为储能设备的关键特征,Fast-Fard-Charging功能引起了广泛的兴趣。它具有巨大的希望,可以扩展或加速其在许多领域的应用,尤其是对于快速充电的电动汽车来替代内部组合发动机车辆,并稳定可再生能源的能源存储,这些能源本质上是间歇性的,例如风力和波浪能。但是,在快速充电条件下,常见的储能设备(例如电池)暴露了严重的降解。这个职业项目是通过在电极中引入内部电场来改善电极动力学和设备性能来开发一种实用的方法来开发快速充电的储能设备。该项目将主持训练营,以培训中高中教师开发科学课程,使他们能够提供丰富的课堂活动和讲座。此外,该项目将涉及提供科学和工程相关项目的代表性不足的学生,尤其是美洲原住民,妇女和第一代大学生。该职业项目的研究目标旨在开发电极中的新型异质结构,以提高与前所述研究的储能设备快速充电能力的快速充电能力。基于初步研究,中央假设是在异源空间上产生的内部电场可以加速离子传输,通过降低激活能量来增强电动动力学,从而在快速充电条件下改善性能。预计将解决这一挑战,并从根本上提高异质结构的电场之间的相关性,以及在储能设备级别上产生的快速充电性能。对这些多学科领域的主要贡献在于几个方面。首先,将对异质结构局部电场对扩散系数和电极动力学的影响产生基本的理解。还将创建模拟模型与实验努力集成。其次,从电子的材料特性到设备的快速充电功能,知识差距将填补。第三,与最先进的研究中的常规纳米结构工程方法不同,这些研究具有复杂而高成本的制造过程,在电极中引入异质结构提供了一种有效,安全,轻松和变革性的方法,可显着增强电荷转移,并保持着巨大的前景,可以解决最大的问题,“长期充电时间,现有的能源存储设备”。这项基本研究还将通过调节设备中的电子结构来打开新的能源设备中问题的新大门。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子和更广泛的影响审查标准来评估NSF的法定任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yue Zhou其他文献
Synthesis and structure of calcium silicate hydrate (C-S-H) modified by hydroxyl-terminated polydimethylsiloxane (PDMS)
端羟基聚二甲基硅氧烷(PDMS)改性硅酸钙(C-S-H)的合成与结构
- DOI:
10.1016/j.conbuildmat.2020.120731 - 发表时间:
2020-11 - 期刊:
- 影响因子:7.4
- 作者:
Zheyu Zhu;Zhongping Wang;Yue Zhou;Yongqi Wei;Anming She - 通讯作者:
Anming She
Planning urban energy systems adapting to extreme weather
规划适应极端天气的城市能源系统
- DOI:
10.1016/j.adapen.2021.100053 - 发表时间:
2021-08 - 期刊:
- 影响因子:0
- 作者:
Rui Jing;Xiaonan Wang;Yingru Zhao;Yue Zhou;Jianzhong Wu;Jianyi Lin - 通讯作者:
Jianyi Lin
Characterization of Carbon Tritide Particles in a Tokamak Fusion Reactor
托卡马克聚变反应堆中氚化碳颗粒的表征
- DOI:
10.13182/fst02-a22708 - 发表时间:
2002 - 期刊:
- 影响因子:0.9
- 作者:
Yung;Yue Zhou;C. Gentile;C. Skinner - 通讯作者:
C. Skinner
Enhance the luminescence properties of Ca14Al10Zn6O35:Ti4+ phosphor via cation vacancies engineering of Ca2+ and Zn2+
通过Ca2和Zn2的阳离子空位工程增强Ca14Al10Zn6O35:Ti4荧光粉的发光性能
- DOI:
10.1016/j.ceramint.2019.02.041 - 发表时间:
2019-06 - 期刊:
- 影响因子:5.2
- 作者:
Xianbo Wu;Longhai Liu;Mao Xia;Shengxiong Huang;Yue Zhou;Wang Hu;Zhi Zhou;Nan Zhou - 通讯作者:
Nan Zhou
Intensive land use pattern under ecological constraints: A case study of the Dianchi Lake basin
- DOI:
10.1109/geoinformatics.2015.7378627 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:0
- 作者:
Jie Jin;Hong Zhang;Yue Zhou - 通讯作者:
Yue Zhou
Yue Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yue Zhou', 18)}}的其他基金
Collaborative Research: Understanding and Tailoring the Anode-Electrolyte Interfacial Layers on the Stabilization of Lithium Metal Electrode
合作研究:理解和定制阳极-电解质界面层对锂金属电极稳定性的影响
- 批准号:
2312247 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RII Track-4 NSF: Novel Structure and Properties of Hybrid Electrolytes for Lithium Metal Batteries
RII Track-4 NSF:锂金属电池混合电解质的新颖结构和性能
- 批准号:
2132021 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SiemensEPSRC Digital Twin with Data-Driven Predictive Control: Unlocking Flexibility of Industrial Plants for Supporting a Net Zero Electricity System
具有数据驱动预测控制功能的西门子 EPSRC 数字孪生:释放工业工厂的灵活性,支持净零电力系统
- 批准号:
EP/W028573/1 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Research Grant
CAREER: Fast-Charging Energy Storage Devices Enabled by Modulating Internal Electric Field of Heterostructure
职业:通过调制异质结构内部电场实现快速充电储能装置
- 批准号:
2240507 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding and Tailoring the Anode-Electrolyte Interfacial Layers on the Stabilization of Lithium Metal Electrode
合作研究:理解和定制阳极-电解质界面层对锂金属电极稳定性的影响
- 批准号:
2038082 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于神经网络的FAST馈源融合测量算法研究
- 批准号:12363010
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
使用FAST开展河外中性氢吸收线普查
- 批准号:12373011
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
钢渣粉地聚物超高性能混凝土密实强化与快速胶凝机理
- 批准号:52378230
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
- 批准号:12373107
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
基于FAST观测的重复快速射电暴的统计和演化研究
- 批准号:12303042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
An innovative hybrid infrastructure system delivering both electric and hydrogen for vessel fast charging/refuelling using off grid renewable energy and onsite wastewater.
一种创新的混合基础设施系统,利用离网可再生能源和现场废水,为船舶快速充电/加油提供电力和氢气。
- 批准号:
10099143 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
CAREER: Organic Structure and Interphase Engineering for Fast-Charging, High-Temperature and Sustainable Batteries
职业:快速充电、高温和可持续电池的有机结构和相间工程
- 批准号:
2419947 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Building Australia's Electric Vehicle Fast Charging Infrastructure
建设澳大利亚电动汽车快速充电基础设施
- 批准号:
LP210200473 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Linkage Projects
Understanding the surfaces of fast charging battery materials: SURF-FAST
了解快速充电电池材料的表面:SURF-FAST
- 批准号:
10060998 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
The race to net zero necessitates the development of fast-charging and sustainable rechargeable batteries with long lifetimes and high capacity. One p
实现净零排放的竞赛需要开发具有长寿命和高容量的快速充电和可持续充电电池。
- 批准号:
2891660 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Studentship