CAREER: Towards rational design and control of oxygen migration in oxide thin films for nano-ionic technologies

职业:针对纳米离子技术的氧化物薄膜中氧迁移的合理设计和控制

基本信息

  • 批准号:
    2144383
  • 负责人:
  • 金额:
    $ 60.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).PART 1: NON-TECHNICAL SUMMARYInformation storage and data processing has traditionally relied on moving electrons back and forth between different materials. In contrast, several emerging technologies rely on moving oxygen ions in and out of thin materials to change their properties, like electrical resistance or magnetism, by changing the materials chemistry. The expected advantages of this latter approach include greater energy efficiency, longer information storage lifetimes, and the ability to support new computing approaches like quantum computing. However, accurately measuring oxygen diffusion in very thin films remains challenging and creates a bottleneck in our ability to understand how different materials hinder or facilitate oxygen ion movement at small length scales. This CAREER project, supported by the Ceramics program in the Division of Materials Research, addresses this bottleneck by developing a new measurement technique to accurately measure oxygen migration through stacks of different thin films and from that extract information about the barrier to oxygen migration created by each layer and the interfaces between them. This knowledge can then be used to design technologies based on ion motion with the same precision that enables silicon-based electronics today. In addition, the educational outreach component of this program creates low-cost activity kits and free training videos to help K-12 teachers introduce students to materials science concepts and teach them about several key electronic devices. These kits are supported by free online videos that reinforce the activity concepts and connect them to ongoing research. Such experiences help create a pipeline of enthusiastic young scientists with an early knowledge of materials science principles and how they can be used to create greener technologies. PART 2: TECHNICAL SUMMARY Controlling nanoscale oxygen migration in thin film heterostructures is important to harnessing the unique functional properties found in strongly correlated oxide materials for the next generation of information technologies. As a step towards improved ionic migration control in oxide films, this CAREER project, supported by the Ceramics program in the Division of Materials Research, creates new measurement capabilities and knowledge in the field of nanoscale ion diffusion. Specifically, this program develops a new in-situ scattering approach to quantify oxygen concentration profiles and extract quantitative diffusion coefficients and activation energies from different heterostructure geometries. Combining this approach with thin film engineering techniques enables the isolation of individual structure-property relationships between elements of the heterostructure design (e.g., strain, layer thickness, layer stacking) and their effect on oxygen migration in prototypical perovskite structures. By coupling these spatially resolved scattering studies with temperature-dependent impedance spectroscopy, this work provides insight into the active diffusion mechanism(s) operative in various heterostructure designs and temperature regimes. In conjunction with these research efforts is an educational plan that creates and distributes electronic materials activity kits designed to support state learning standards and are themselves supported by a database of lay-audience videos connecting core ideas from each activity to ongoing research. Graduate students engaged with the project gain experience in electronic materials synthesis, state-of-the-art characterization methodologies, and scientific communication to a variety of audiences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金根据《2021 年美国救援计划法案》(公法 117-2)提供。 第 1 部分:非技术摘要信息存储和数据处理传统上依赖于在不同材料之间来回移动电子。相比之下,一些新兴技术依赖于将氧离子移入或移出薄材料,通过改变材料的化学性质来改变其特性,例如电阻或磁性。后一种方法的预期优势包括更高的能源效率、更长的信息存储寿命以及支持量子计算等新计算方法的能力。然而,准确测量非常薄的薄膜中的氧扩散仍然具有挑战性,并且在我们理解不同材料如何阻碍或促进氧离子在小长度尺度上运动的能力方面造成了瓶颈。这个职业项目得到了材料研究部陶瓷项目的支持,通过开发一种新的测量技术来解决这个瓶颈,该技术可以准确测量氧气通过不同薄膜堆叠的迁移,并从中提取有关每个薄膜产生的氧气迁移屏障的信息。层以及它们之间的接口。然后,这些知识可用于设计基于离子运动的技术,其精度与当今硅基电子产品的精度相同。此外,该计划的教育推广部分还创建了低成本活动套件和免费培训视频,帮助 K-12 教师向学生介绍材料科学概念并教他们几种关键电子设备。这些套件由免费在线视频提供支持,这些视频强化了活动概念并将其与正在进行的研究联系起来。这些经验有助于培养一批充满热情的年轻科学家,他们对材料科学原理以及如何利用它们来创造更环保的技术有较早的了解。第 2 部分:技术摘要 控制薄膜异质结构中的纳米级氧迁移对于利用强相关氧化物材料中的独特功能特性实现下一代信息技术非常重要。作为改善氧化膜中离子迁移控制的一步,这个职业项目得到了材料研究部陶瓷项目的支持,在纳米级离子扩散领域创造了新的测量能力和知识。具体来说,该计划开发了一种新的原位散射方法来量化氧浓度分布并从不同异质结构几何形状中提取定量扩散系数和活化能。将此方法与薄膜工程技术相结合,可以分离异质结构设计元素(例如应变、层厚度、层堆叠)之间的各个结构-性能关系及其对原型钙钛矿结构中氧迁移的影响。通过将这些空间分辨散射研究与温度相关的阻抗谱相结合,这项工作提供了对在各种异质结构设计和温度状态下有效的主动扩散机制的深入了解。与这些研究工作相结合的是一项教育计划,该计划创建和分发电子材料活动套件,旨在支持州学习标准,并且本身得到非专业观众视频数据库的支持,该数据库将每个活动的核心思想与正在进行的研究联系起来。参与该项目的研究生获得了电子材料合成、最先进的表征方法以及向各种受众进行科学传播方面的经验。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,被认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Need其他文献

Ryan Need的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

利用化学遗传学研究植物的向重力性
  • 批准号:
    32370306
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
骤旱向季节性干旱演变的驱动机制及其对植被的影响机理
  • 批准号:
    52309032
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
KLF5在前列腺肿瘤管腔祖细胞向神经内分泌细胞转变中的功能和机制研究
  • 批准号:
    82303045
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
疏水FexC基催化剂上合成气向C4~C16线性α-烯烃的低碳、定向转化机制
  • 批准号:
    22302149
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
  • 批准号:
    82300777
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Towards a mechanistic understanding of the role of gut microbiota in postnatal growth impairment
从机制上理解肠道微生物群在产后生长障碍中的作用
  • 批准号:
    10655393
  • 财政年份:
    2022
  • 资助金额:
    $ 60.68万
  • 项目类别:
Towards a mechanistic understanding of the role of gut microbiota in postnatal growth impairment
从机制上理解肠道微生物群在产后生长障碍中的作用
  • 批准号:
    10765586
  • 财政年份:
    2022
  • 资助金额:
    $ 60.68万
  • 项目类别:
Towards a quantum-mechanical understanding of proton-coupled electron transfer and transition metal reactivity in biological processes
对生物过程中质子耦合电子转移和过渡金属反应性的量子力学理解
  • 批准号:
    10386836
  • 财政年份:
    2021
  • 资助金额:
    $ 60.68万
  • 项目类别:
CAREER: Towards Rational Design of "Smart" Surfaces from Two-Component Polymer Brushes
职业生涯:通过双组分聚合物刷实现“智能”表面的合理设计
  • 批准号:
    0847016
  • 财政年份:
    2009
  • 资助金额:
    $ 60.68万
  • 项目类别:
    Continuing Grant
CAREER: Towards Fundamental Understanding and Rational Control of Crystal Growth
职业:对晶体生长的基本理解和合理控制
  • 批准号:
    0449633
  • 财政年份:
    2005
  • 资助金额:
    $ 60.68万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了